Scalability Benchmarking of Stream
Conformance Checking Algorithms

Implementation and Comparison

Benedikt Marc Masuhr

Bachelor thesis
September 2024

Software Engineering Group
Department of Computer Science
Kiel University

Advised by
Prof. Dr. Wilhelm Hasselbring
M. Sc. Hendrik Reiter

Selbststandigkeitserklirung

Hiermit erkldre ich, dass ich die vorliegende Arbeit selbststindig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erklére ich, dass die digitale Fassung dieser Arbeit, die dem Priifungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

%%,4@/

Kiel,

iii

Abstract

Businesses often specify the orderly execution of their processes through process models.
Conformance checking, a branch of Process Mining, compares the actual observed behaviour
with the prescribed behaviour in the process model. Many conformance checking techniques
aim to accomplish this. In modern times businesses are interested in the detection of devia-
tions between execution of a process and the prescribed model in real time. Consequently,
conformance checking techniques are required that work in an online, or in-vivo, setting.
Many such online conformance checking algorithm exists with different results. In this paper,
we aim to establish a fundamental basis for benchmarking online conformance checking
algorithms. We implemented and tested three of the most cited online techniques and tested
them based on our benchmarks. The benchmarks show that the horizontal scalability of the
tested algorithms varies, while the results indicate one specific algorithm.

Contents

1 Introduction 1
2 Background 3
2.1 Petrinet e e 3
22 EBventLogs e 4
2.3 Behavioural Patterns 6
24 Alignments. e 7
25 Kubernetes e, 9
26 Kafka e 10
2.7 Theodelite e 10
3 Literature Review 13
4 Online conformance checking algorithms 15
4.1 Behavioural Pattern 15
4.2 Behavioural Pattern Algorithm Implementation 17
43 Prefix Alignment L L 19
44 Prefix-Alignment Algorithm Implementation 20
45 TokenBasedReplay. 21
4.6 Similarities between the algorithms 0 000 22
5 Benchmarks 25
51 Experiment. 25
52 Evaluation s, 26
53 Result e e 31
6 Discussion 33
6.1 Limitations e e e 33
7 Conclusion 35
7.1 Future Outlook e 35
A Petri Nets used for Tests 37
Bibliography 39

vii

List of Figures

2.1 An example Petri net created with pm4py library [BZS23] 4
2.2 An example Petri net created with pm4py library [BZS23] 8
4.1 Three measures presented in [BZA+18] 16
5.1 Single Prefix-alignment algorithm tested on A.1 26
5.2 Single Behavioural Pattern algorithm tested on A.1 26
5.3 Single Token-based replay tested on A.1 27
54 Single Prefix-alignment algorithm tested on A2 27
5.5 Single Behavioural Pattern algorithm testedon A2 27
5.6 Single Token-based replay tested on A2 28
5.7 Prefix Alignment with 3 Replica on Petrinet A.1. 29
5.8 Behavioural Patterns with 3 Replica on Petrinet A1 29
5.9 Token-based replay with 3 Replica on Petrinet A1 29
5.10 Prefix-alignments with 3 Replica on Petrinet A2 30
5.11 Behavioural Patterns with 3 Replica on Petrinet A2 30
5.12 Token-based replay with 3 Replica on Petrinet A2 30
6.1 Short Petri net with one and gate, made with [BZS23]. 33
6.2 Petri net with a multitude of and gates, made in [BZS23] 34
A.1 Petri net used for the first set of tests using Theodolite 37
A.2 Petri net used for the second set of tests using Theodolite 37

ix

21
2.2

4.1

51

List of Tables

Example event log excerpt L o o 6
Examples for trace alignments 8
Examples for trace alignments 19
Performance of algorithm on Petri nets with varying degrees of workload . . . 31

xi

Chapter 1

Introduction

Process mining is the domain of monitoring, validating and improving business processes
[Aall1]. Process mining has three main disciplines: Process discovery, process enhancement
and conformance checking. Process discovery is concerned with discovering business process
models extracted from information available in today’s information system, e.g. event logs.
There exists a multitude of algorithms that extract information from a process log and
formulate a fitting process model [Aall6].

Process enhancement focuses on optimising business process models and their execution in
real life. Enhancement achieves this goal through two different types of process enhancement:
process extension and process improvement. Both techniques ensure that the process model is
as precise as possible, clearly defining the behaviour that is allowed and not allowing for any
illegal behaviour. The model is also being modified to fit with what is realistically possible in
real execution regarding time constraints and resource consumption, e.g. workforce. Lastly,
it improves current process models through replacing or forbidding execution that leads to
inefficient performance, while trying to build efficient process models [Leo22].

Conformance checking takes the event log and the process model as input. Where the event
log represents the is-state of the business execution, the business process model represents
the target state of the process execution. Conformance checking compares them with each
other to assess how much of the event log adheres to the prescribed process model [Aal12].

Nevertheless, event logs need to collect all the information about the execution of the
cases, before the cases can be verified. This consequently results in the identification of
discrepancies at a later stage than would be optimal, i.e. when they occur. The ability to
identify deviations from a process in real-time is becoming increasingly relevant, as regulations
from agencies become more demanding, and businesses become more focused on optimising
their processes. Deviations from the process model must be identified in real time in highly
critical environments, e.g. healthcare institutions or airports. It is therefore necessary to
develop conformance checking algorithms that do not rely on the completed event log before
the recorded behaviour is compared to the prescribed one. Such algorithms are referred to
as online conformance checking algorithms. The distinction between online and non-online
algorithms lies in their capacity to process each execution of a case in real time as it is
recorded. Since the source of events, in an online setting, is an active event stream, instead of
an event log that is completed in advance, the algorithm must monitor all activities recorded
in a case to ascertain the sequence in which the process was executed for each case. The
difficulty lies in the fact that the completion of a case from the most recent recorded activity
is unknown, preventing a comprehensive examination of the case.

1. Introduction

This paper aims to test different popular online conformance checking algorithms. These
algorithms were chosen based on the frequency of citations they have garnered. Our goal
is to create a foundation to benchmark different online conformance checking algorithms
on parameters that are relevant to their performance regarding an event stream and their
scalability. We aim to create tests that favour only the algorithm that scales best on the given
task. For that, we create several benchmark tests with increasing intensity and evaluate which
algorithm performs best in which task.

The remainder of this paper is structured as follows. In Chapter 2 the fundamental princi-
ples underlying our online conformance checking algorithms are introduced and explained.
Chapter 3 presents a review of the literature and methods that were not incorporated into this
work but were deemed relevant nevertheless. In Chapter 4 we present the implementation of
our online conformance checking algorithm and provide an explanation of its functionality.
Subsequently, a series of tests is conducted in Chapter 5. Furthermore, the results of the
aforementioned tests are subjected to analysis and visualisation. The challenges that occurred
during implementation as well as a set of assumptions, made prior to running the algorithms,
are presented in Chapter 6.1. The findings are summarised in Chapter 7 and a series of
potential avenues for future research are proposed.

Chapter 2

Background

For this paper, it is assumed that the technical process description is a Petri net. While
alternative approaches to technical process description are frequently employed, the graphical
representation method is particularly prevalent [DSM+19]. A variety of graphical representa-
tions are available for consideration including, but not limited to, UML activity diagrams,
BPMN, Heuristics nets, Directly-Follows Graphs and EPC. However, Petri nets are among
the oldest and most thoroughly investigated process model languages [Aal16]. Moreover,
numerous models can be translated from one representation to another without the loss of
information. Concerning the implemented algorithms we only need information extracted
from the model, except for the Token-based replay algorithm, which needs the Petri net itself.
The Token-based replay necessitates a sound workflow Petri net. The information derived
from Petri nets and the Petri nets themselves are discussed in this chapter.

2.1 Petri net

The definition of a Petri net is described in [Mur89] and is regularly repeated throughout the
literature. A full Petri net with markings is defined by [Mur89] as:

2.1.1 Definition (Petri net). Petri net is a 5-tuple Py = (P, T, F, W, My) where:
P = {p1,p2,p3 - ,pn} as all places within the Petri net

T = {t,ta,t3, -+ ,tm} as all transitions included in the Petri net

F<c (PxT)u (T x P) as the arcs between places and transitions

W : F — INj is an optional weight function on places and transitions,

M; : P — Ny is the initial marking positioned in the start place of the Net,
My : P — INp is the final marking positioned in the end place of the Net,
PnT=gand PuT #

A Petri net structure N = (P, T, F, W) without any specific initial marking is denoted as
N. A Petri net with the given initial marking is denoted as Py = (N, M).

2.1.2 Definition (Workflow Petri net). Introduced in [VAN98], a Petri net Py is a Workflow
Petri net Py if the following is true:

> It possesses a special place p, that acts as the only source of tokens for the Petri net Py.

2. Background

Figure 2.1. An example Petri net created with pm4py library [BZS23]

> There is another special place ps; which is the sole sink of the Petri net Py where all tokens
end.

> Any and all transitions t* can be reached from place p, as well as lead to place ps. The
resulting Petri net Py is considered a strongly connected Petri net.

A transition t, is active or able to "fire" if each input place p leading to the transition ¢,

contains the number of markings described by w(p, t,) where w(p, t,) is the weight of the arc
from the previous place p to transition t.
Activated or "fired" transition ¢, first consumes all tokens in previous places p. The transition
t, then produces markings for all the following places p. The markings in each following
place p depend on w(t,, p) where w(t,, p) is the weight of the arc from the transition t, to
the place p.

An exemplary Petri net is illustrated in Figure 2.1. The Petri net illustrates the concept
of places and transitions. Transitions are represented by squares which are labelled with a
designated name and an internal ID. The sole attribute of a place is an internal ID. It can be
observed that the transition designated as "Store" is executed initially, immediately following
the start place. The initial activity designated as the "start activity" generates a token that is
directed to the subsequent places associated with the transition. The named transition "Pass to
Production” or the transition named "Reject" will consume the token and produce a token in
its own subsequent place. It is proposed that each execution of the process should commence
at the designated place "start place" with initial marking, and the marking is consumed by a
following start transition, i.e. "Store", before transferring it to its successor place. This process
will continue until a token has reached the final place which is the place from which no
further transitions can consume a token. In the case of the Petri net shown in Figure 2.1 it
is the place after the transition named "Reject" or after the transition named "Package sent".
These transitions also constitute a set of final transitions as no further transitions will be
performed after them.

2.2 Event Logs

In a business context, a process may be performed on numerous occasions, often concurrently.
This is to say that while one process is still underway a new process of the same type may be
initiated. In order to ascertain the precise execution of the process it is necessary to record

2.2. Event Logs

it in order to facilitate a comparison between the recorded behaviour and the intended
process execution set out in the model. To distinguish between each individual execution a
unique identifier designated as a case ID is assigned to each process execution. Upon the
conclusion of each activity within the process, as outlined by the transitions within a Petri
net, the completion of that activity is recorded in the event log accompanied by additional
information. This information encompasses the process execution or case to which the activity
belongs, a timestamp indicating the time at which the activity was successfully completed
and any supplementary data or information deemed pertinent.

2.2.1 Definition (Events). Let C denote the universe of all case identifiers. Let A denote the
universe of all activity identifiers. Let 7 denote the universe of all time references and let
‘R denote the universe of all and any additional resources. Let E denote the universe of all
possible events e € E with e = (c,a, 7T, 7).

Activity a was executed in the context of case c at time T with additional resource r. Such
additional information can be represented by any means of required resource, e.g. by whom
the activity was executed or what material was used. The concatenation of many such events
builds an event log.

The recorded behaviour displayed in the event log will show the is-state of the process
execution which can be validated against the target-process execution represented in the Petri
net.

2.2.2 Definition (Event Log). A tuple (c,a,7,7) € C x A x T x R presents a single event
within the event log. An event log L is a finite sequence over C x A x T x R. So that
Lc(CxAxTxR).

A model event log can be observed in Table 2.1. Each incoming event is given a uniquely
identifying event ID. Further, each event belongs to one case ID.

Moreover, each event is associated with a single case ID. A multitude of events contribute
to the formation of a case which represents the completion of a full business process. The
activity described in the event indicates the stage of the process at which the case is currently
situated. All events recorded in the event log demonstrate the extent of process completion.
The timestamp provides precise information regarding the point in time at which the activity
has been completed and has been transitioned to the subsequent activity which is then ready
for processing. The information attribute provides details of any additional data that may
be of interest such as the resources required to complete the activity or the personnel or
machinery involved in the process. It is important to note that event logs are designed in
such a way that events are collected and cases are fully executed before any conformance
checking can be performed. This gives rise to a number of inferences. In essence, the event
log encompasses all essential details pertaining to a case, including the activities undertaken
within the case and any deviations from the prescribed process. Notably, the beginning as
well as the end of each case are also recorded. This allows for the execution of a fully accurate
compliance check. Conversely, the initial step is to collate this data which may result in a

2. Background

Table 2.1. Example event log excerpt

Event ID | Case ID Activity Timestamp Resource
1 case 1 Store 2024-08-17 16:08:13 GoodsDelivery
2 case 1 Pass To Production 2024-08-17 16:12:32 GoodsDelivery
3 case 1 Waiting for Material | 2024-08-17 16:14:32 | MaterialPreparation
4 case 1 Pass To Production 2024-08-17 16:15:41 GoodsDelivery
5 case 1 | Material Prep. Finished | 2024-08-17 16:15:41 | MaterialPreparation
6 case 2 Store 2024-08-18 11:15:49 GoodsDelivery
7 case 3 Store 2024-08-19 21:12:22 GoodsDelivery
8 case 3 Reject 2024-08-20 00:55:00 GoodsDelivery
9 case 1 Assembly complete 2024-08-20 03:56:00 | AssemblyProcess
10 case 2 | Material Prep. Finished | 2024-08-23 07:58:37 | MaterialPreparation
11 case 2 Waiting for sending | 2024-08-23 16:51:05 Shipping
12 case 1 Package sent 2024-08-23 17:11:27 Shipping

lengthy delay between process execution and conformance check. However, as previously
discussed in chapter 1 there are instances where it is crucial to identify deviations from the
anticipated process in a prompt and real-time manner. This highlights the necessity for event
streams which are analogous to event logs but, most notably, distinguish themselves from
event logs by the fact that they are potentially infinite.

2.2.3 Definition (Event Streams). Given the universe of observable events ¢ = (c,a,T,7) <
C x A xT xR, an event stream S of events ¢ is defined as an infinite sequence of observable
events.

As infinite memory does not exist, it is only possible to memorise parts of the event
stream at a time. Therefore, the beginning of some cases might not be accessible any more.
Furthermore, as the stream continuously grows and adds new events for each point in time T
there is no further information about each case at time T considering the uncertainty on how
the case continues or whether the last recorded activity is the last activity in the case. The
problem arises during conformance checking because offline techniques do not take these
challenges into account. Therefore, conformance checks can only be performed based on the
activities that have been observed for each case. We will present several techniques of online
conformance checking in Chapter 4. These approaches require a deeper understanding which
will be demonstrated in the following.

2.3 Behavioural Patterns

Behavioural patterns can be derived from the target business process. While behavioural
patterns do not dictate a Petri net as they are independent of the exact process model, Petri

2.4. Alignments

nets are one good example of displaying behavioural patterns.
[BZA+18] defined behavioural patterns formerly as:

2.3.1 Definition (Behavioural Pattern). A set of the universe of all activity identifiers A and
a possible set of the universe of all control-flow relations R, where a behavioural pattern is
defined as r(x, y) with x,y € A being activities and r € R, represents a control-flow relation. It
is also common to write r(x, y) as xry. A business process B is a set of all possible behavioural
patterns such that B < R x A x A with A denoting the universe of all activity identifiers and
R denoting the universe of all control-flow relations.

To visualise behavioural patterns the activity "Store" (a), seen in Figure 2.1, must be
executed before the activity "Pass to Production" (b) and both must be executed before
"Material Preparation Finished" (c). This gives us the behavioural patterns a > b and b > c.
Furthermore, observe in Figure 2.1 the existence of pattern b > f by proceeding from "Pass
to Production" (b) to the activity "Waiting for Material" (f). There are many such molecular
behavioural patterns in each business process.

A business execution, as seen in real life, performs several different behavioural patterns
in a row. The concatenation of such behavioural patterns can be seen as something similar to
the alignments of a process model.

2.4 Alignments

Alignments can be visualised as many behavioural patterns concatenated together. These
alignments are derived from a Petri net or similar representation of a business process, similar
to behavioural patterns. Consider Figure 2.2 where a model process can be observed. After
the first activity "a" in transition #; a decision in the process is made whether it proceeds to

"n_n

activity "b" in transition f, or to activity "c" in transition t3. If the process followed activity "b"
it will once again decide if activity "d" in transition ¢4 or activity "e" in transition t5 is being
executed next. Following that, a decision on activity "h" in transition tg will be processed.
If the process decides to go to activity "c" it will continue to perform both; activity "f" in

n._n

transition t¢ as well as activity "g" in transition ¢;. After this concurrent move of activity "f"
and "g", activity "i" in transition t9 will be executed. Transition t;p will perform activity "j" if
either of the previously explained paths has been followed. After processing activity "j" the
business process will terminate. Exemplary alignments that fit the described Petri net can be
observed in Table 2.2. The first alignment, alignment 73, explores an execution path of the
business process. However, at activity two and activity five the alignment records deviations
from the process dictated in the process model. These two deviations visualise the possible
cost a trace alignment can record. The first deviation records a skipped activity. From activity
"a" the model dictates that activity "b" or activity "c" must follow: a > b or a > c. However,
activity "d" is the next recorded activity thus it needs to skip activity "b" in this case and
denotes a cost increase of one. The second deviation is an added activity, i.e. an activity not
prescribed by the process model and added by the event stream through noise. For the second

deviation, a cost increase of one is needed as well.

2. Background

Figure 2.2. An example Petri net created with pm4py library [BZS23]

As there is no skip in prescribed activities, an activity that is not part of the business
process is recorded, meaning activity x ¢ A. Therefore the position of the trace can not move
forward from transition tg.

2.4.1 Definition (Alignments). Let A denote a set of all activities in the business process. Let
Py be the Petri net over the business process. Let ¢ € A be a sequence of activities a such that
o= (ay,...,a,). With |o]| = n representing the number of activities in the sequence. If n = 0,
then ¢ is an empty sequence.
An alignment 7 € (0 x Py) is:

> A legal combination of behavioural patterns a;ra; such that every activity in ¢ can be
executed properly in accordance with prior activities in ¢ and to the referenced Petri net
Py, and

> The first activity in 7y describes an activity directly reachable from the initial marking
without passing over any other named transitions. Furthermore, the last recorded activity
in 7y depicts a named transition which is immediately followed by the place that holds the
final marking of the Petri net Py, i.e. an end activity.

I' is defined as the set of all allowed alignments between traces ¢ and the Petri net Pyy.

Table 2.2. Examples for trace alignments
a‘>>‘d‘h‘x‘i a‘c‘f‘g‘i‘j
tl‘tz‘iq‘tg‘»‘tg

T = T2 =

b ts | te | t7 | to | tao

Alignments were first presented as a means for more robust methods against peculiarities
of process models such as duplicate and invisible tasks [Adr14]. While these high-level
deviation detections have improved low-level deviations, i.e. observed activities that are not
allowed, according to the business process and the other way around, are also identified. As
such they were rather effective as offline conformance checking metrics. However, they are
not fit for online conformance checking as the alignment is required to be completed, i.e.
it starts from the very beginning of the Petri net Pyy and ends at the Petri net’s last named

2.5. Kubernetes

transition. Conformance checking in online settings poses the challenge that a trace is not yet
complete and more activities will be added to the trace and subsequently to the alignment in
the future. As such a shorter alignment is required. One that enables growth or allows the
trace only to show a sequence of allowed behaviour in the Petri net up until the last recorded
activity. In short, the second part of definition 2.4.1 needs to be relaxed. However, there are
many possible ways of reaching any given named transition in a Petri net. This results in the
need to rank all prefix-alignments that reach the same transition between each other which is
true for all transitions in the Petri net. The length is an obvious choice as a prefix-alignment
is, much like a conventional alignment, just a sequence of moves or patterns. As such, the
minimal cost for such a prefix-alignment 7 in all traces 0; that end at each transition ¢ is the
prefix-alignment 7 with the fewest patterns, i.e. || is the minimum of all 7 € 7;.

2.4.2 Definition (Prefix-Alignments). Let ¢ € A be a sequence of activities. Furthermore,
let Py be a Petri net with initial and final marking M; and Mr. Let v € I'(N, 0, M;, M f) be
optimal. If 7 is a prefix of ¢ and 7 € I'(N, @, M;, My) is an optimal prefix-alignment, then the
cost x(7y) < x(y).

Consequently, the cost of the completed alignment 7y is always going to be underestimated
with the cost of an optimal prefix-alignment. This is advantageous because once a prefix-
alignment is recorded that has a nonzero cost, i.e. a non-optimal alignment, we can guarantee
that a deviation from the business process execution has occurred.

For the performance of our online conformance algorithm test a different software, previ-
ously mentioned in chapter 1, is required. The underlying system that manages the deploy-
ment and ensures our test run is the software Kubernetes.

2.5 Kubernetes

Our algorithm will be deployed using Kubernetes and Theodolite, explained in section 2.7. It
is an open-source platform designed to automate the deployment, scaling, and operation of
containerised applications!. Our virtual online setting will be deployed in Pods provided and
managed by Kubernetes.

A docker container runs one single application and communicates information to other
containers if applicable. A multitude of containers build one Pod. A Pod represents one
complete set of containers working together to perform one test.

Each Kubernetes Pod will host a replication of our experiment setting in multiple contain-
ers. In the context of this paper the applications constitute our online conformance checking
algorithms, a load generator to simulate the event stream and Theodolite to monitor the
performance of the conformance checking algorithms. Communication between the load
generator and the conformance checking algorithm is handled by Kafka.

1 https://kubernetes.io/, Accessed 19.09.2024

https://kubernetes.io/

2. Background

As Kubernetes provides a robust framework for orchestrating containerised applications
to combat service discovery, load balancing and scaling, it is an optimal choice for our
experiment. Upon starting our experiment Kubernetes will first create a Pods with the
necessary containers. Secondly, it will boot up Theodolite which will, as explained in more
detail in section 2.7, handle the deployment of the Kafka communication and start our own
conformance checking algorithms.

Kubernetes also enables Theodolite to deploy and integrate new containers if needed
continuously. This will be especially helpful as we aim to test the horizontal scaling of our
algorithms, i.e. we test how the algorithm scales with an increasing workload if multiple
instances of the same algorithm are deployed.

2.6 Kafka

The communication between each conformance checking algorithm and the event stream will
be handled by Kafka for several reasons:

> Apache Kafka is a well event-streaming platform? known for its performances to distribute,
in scalability and in being fault-tolerant. As the load is generated and sent to the confor-
mance checking algorithm it increases. The scalability and fault-tolerance of the algorithms
are key parts of the experiments.

> Kafka is compatible with our benchmark software Theodolite and deployment software
Kubernetes.

> Kafka represents a publish-subscribe model. A publisher issues messages that all sub-
scribed consumers can read. The role of the publisher inhabits the event stream producer
while the role of the consumer is taken by the algorithms.

For these reasons Kafka is a reasonable choice for handling the generation of events in a
simulated event stream and the reliable delivery to the conformance checking algorithm. The
Producer creates events based on a load-generating YAML file that represents the Petri net.
The actual load intensity is controlled by Theodolite. The Kafka consumer takes each event
and calls the conformance checking algorithm to process the information in the event in
accordance with the Petri net.

2.7 Theodelite

As a benchmark software Theodolite will be used. The definition of a benchmark is sum-
marised by [Has21] as a standard tool for competitive evaluation and comparison of software
in regards to characteristics such as performance, dependability or scalability. A benchmark

2Kaﬂ<a, https://kafka.apache.org/documentation, Accessed: 20.09.2024

10

https://kafka.apache.org/documentation

2.7. Theodelite

must motivate the comparison of the software itself in the research area. Further, the bench-
mark must be relatable to the real world, i.e. the benchmark should perform tests that mimic
the behaviour the software is exposed to in actual practice. The measurements from the
benchmark must be quantitative or qualitative and feasible by a human or a machine. In
addition to these requirements for benchmarks [Has21] and [KAH+15] define a few key
characteristics. These characteristics amount to reproducibility, usability, verifiability, and
fairness. Reproducibility requires the benchmark to consistently produce similar results when
it is run with the same test configurations. Usability ensures that others can also reproduce the
benchmark without roadblocks. Verifiability constitutes the characteristic that a benchmark
provides accurate results. The fairness attribute declares that different test configurations are
allowed to compete on their values without any artificial limitations.
Theodolite is a framework for performing benchmark tests regarding the horizontal and
vertical scalability of cloud-native applications [HH22]. Each one of our conformance checking
algorithms will undergo a Theodolite benchmark test. During the benchmark testing these
algorithms will be denoted as systems under test (SUT). Theodolite introduces three metrics
for their framework: load intensity, service level objectives (SLO) and provisioned resources.
Load intensity specifies the amount of data a system receives, i.e. how often the processing
of data by the system under test is called. The better the SUT can handle these increasing
data loads, i.e. at every new message the SUT can successfully process the message before the
next one requires processing, the better it scales. In the framework of this paper the messages
are events where the conformance checking algorithms are being tested to see how many
events they can successfully process in, e.g. a minute or a second, disregarding events that
have been created but not processed thus far. SLO are quality criteria that must be fulfilled
by the system under test at every load intensity for the system under test to pass the load
intensity. Provisioned resources are the amount of memory and CPU power a system under
test has access to, as well as the number of instances of the system under test. Provisioned
resources are split into two metrics that Theodolites tracks during benchmark tests.

Horizontal scaling tests the scalability of the system under test by varying the amount of
Kubernetes Pods while the memory and CPU constraints stay the same.

Theodolite can determine the resource demand metric and the load capacity metric from
these benchmarks defined by [HH22] as follows.

2.7.1 Definition. Let L be the set of possible load intensities. Let R be the set of possible
resource kinds. Further, assume that an ordering between both set L and R exists. Let S be
the set of all possible SLO s € S as a Boolean-valued function slos : L x R — {false, true }
with slos(I,r) = true if a system deployed with r resource amounts does not violate SLO s
when processing load intensity .

The resource demand metric is denoted as demand : L — R, definedas :

Vi€ L :demand(l) = min{r € R| Vs € S : slos(l,r) = true}

Likewise the resource capacity metric is denoted as capacity : R — L and defined as:
Vr e R : capacity(r) = max{l € L | Vs € § : slos(l,r) = true}

11

2. Background

The load generator produces messages for the Kafka producer to release to the consumer
or system under test. The task of this system under test is to process the messages from the
producer as they are released. The lag depicts the messages that have been published but
have yet to be processed by the consumer. Further, the lag trend is the growth in messages
that the producer has released but the consumer has not processed thus far. The lag trend
informs about the discrepancy between the speed with which the producer generates new
messages and the speed of the system under test, or the consumer, with which it processes
the messages. Theodolite measures the lag trend between producer and consumer making it
an adequate choice for stream benchmark testing [HH21]. Furthermore, previous research by
[Rei24] proved that Theodolite is well suited for performing benchmark tests on our process
mining tasks such as conformance checking.

12

Chapter 3

Literature Review

A plethora of different online conformance checking techniques exist. While most papers
perform tests on their individual algorithm, some papers [WSA+22; BA21] also compare
their algorithm with others. However, to the best of our knowledge, there is no research
comparing the scalability of several online conformance checking algorithms without bias
of the algorithm introduced in their paper or with tests based on benchmark characteristics.
Paper exists that compares such algorithms, however, they only compare them based on
characteristics such as methods or quality metrics [DSM+19].

Our conformance checking algorithms all embody the same method for memory cleanup.
However, there is ample literature providing different methods. These methods are likely
faster and better suited to determine which cases to keep and which to delete. Several dif-
ferent algorithms for finding frequent items are introduced in [CHO09]. Through extensive
testing [CHO9] deduces that counter-based algorithms perform the best. The counter-based
"SpaceSaving" algorithm introduced by [MAEO04] was a clear favourite by [CH09]. "Space-
Saving" stores a n amount of pairs (item, count) initialised by the first n distinct items and
their exact counts. Whenever a new item appears that is tracked the counter for that item
is increased. If the next item is not monitored, it replaces the currently tracked item with
the fewest occurrences. The count of the item that is now monitored is increased by one.
This results in a space consumption of O(n). Three different methods for efficient memory
consumption are presented in [ZHD21]. These methods include limiting the saved trace to
the newest behaviour exclusively limiting the number of cases tracked and a combination of
both. A more complex method is introduced in [CSS+09]: The method explains forward delay.
At the time when a new case is recorded a forward decay function determines the point at
which the case will no longer be of relevance. An algorithm needs to be able to know at all
times when a case is decayed. This might add more resource consumption and there is no
guarantee that the case will truly be dispensable.

A more abstract method for memory keeping is introduced in [Vit85] via reservoirs.
Deducted from the paper a reservoir with size n can be interposed between accepting an
event and processing the activity with its case trace. The reservoir would hold recurring cases.
All cases not in the reservoir have a greater chance of being erased from memory.

13

Chapter 4

Online conformance checking algorithms

This section presents the three online conformance checking algorithms utilised in this paper.
The first online conformance checking algorithm that will be implemented is the behavioural
pattern algorithm which is founded upon the work of [BZA+18]. The second algorithm is
based on the concept of prefix-alignment as outlined in [ZBH+17]. They improve the algorithm
presented in [Adr14] based on alignments and adapt it to the online setting. The final
algorithm is introduced in [BA21] and implemented in the PM4Py library of the Fraunhofer
Institution [BZS23]. All three algorithms have been implemented in Python version 3.10. The
deployment of our algorithms will be handled by Kubernetes in a cloud-based container
setting. The scalability benchmark test will be performed using Theodolite software presented
in [HH21]. The focus of the testing will be on the horizontal scaling of the implemented
algorithms and the load lag. Horizontal scaling tests how the performance of the algorithms
improves with an increasing number of deployments. The load lag describes the difference
between the speed of incoming events from the stream and the speed of the algorithm
processing each event. Apache Kafka will be used to handle the communication between the
source for events, i.e. our event stream and the containers hosting our conformance checking
algorithms.

4.1 Behavioural Pattern

The initial algorithm presented in this paper as outlined by [BZA+18] is not reliant on
a particular model or representation of a process execution. The algorithm operates on
behavioural patterns as its sole input. The aforementioned behavioural patterns are defined in
definition 2.3. In the absence of prior knowledge regarding the behavioural patterns, they can
be retrieved from any representation of a process model, e.g. a Petri net or BMPN. A number
of methods for the extraction of these patterns can be found in [KKV03] and [MP95]. As these
patterns are assumed and indeed are provided in our test setup through a Heuristics net,
the readers are directed to these sources for further research if interested. These behavioural
patterns define the sequence of activities that may be initiated following the completion of a
preceding activity. The sourcing of the behavioural patterns is conducted in an offline setting
prior to the launch of the online conformance checking process.

As event streams operate as an infinite sequence of events with some earlier events already
out of memory [BZA+18] also consider warm start scenarios, i.e. traces that do not necessarily

15

4. Online conformance checking algorithms

Conformance
Based on the correctness of the relations so far

Completeness Confidence
Based on the amount of previous relations Based on the estimated behavior still to observe

Process instance - ; i ¥ ¥

Previous behavioral patterns Latest behavioral Future behavioral patterns
pattern observed (not yet observed)

Figure 4.1. Three measures presented in [BZA+18]

record all previously completed activities. They decided to look at how many activities might
have happened before the recorded activities in the trace. This leads [BZA+18] to consider
three major parameters to assess the overall conformance of the considered trace w.r.t the
model the trace must adhere to.

>

16

Completeness: Displaying whether or not a trace starts closer to the business process’s
beginning. The more activity relations from the start of the business process to the recorded
start in the trace are missing, the lower the completeness value is. The completeness value
decreases as the margin for false activity relations increases. Respectively, if the trace starts
at the very beginning of the business process, the completeness value is at its maximum
value, which is one as there are no possible relations preceding the trace.

Conformance: Demonstrating how much of the behaviour seen in the trace matches the
proper business process execution according to the model. The more they match the higher
the conformance score is. If the recorded process snippet in the trace perfectly matches
the business process prescribed by the model, the trace conformance and its value are at
their maximum, which is also one. If the behaviour observed in the trace however does
not match any part of the business process prescribed by the model and is therefore not
represented in the reachability graph, the conformance is at its minimum value, which is
zero.

Confidence: Predicting how likely it is for the trace to be completed in accordance with
the business process foreseen by the reference model. Traces that are further from com-
pletion may trail from the supposed business process execution. This results in a higher
statistical chance for deviation in the future. As such, traces which are far from business
process completion are assigned a low confidence, while traces which near their potential
completion are given a higher score. The value for confidence varies between zero and
one. With one being the highest value meaning they finished, and zero meaning that the
trace is furthest from completion and, therefore, has the highest uncertainty of completing
conform.

4.2. Behavioural Pattern Algorithm Implementation

Considering Figure 4.1 where these parameters are visualised. While completeness sum-
marises what could have happened before all behaviour was recorded, conformance focuses
on the behaviour recorded much like other existing online conformance checking techniques
and, finally, confidence gauges how likely it is that the case finishes in conformity to the Petri
net.

4.2 Behavioural Pattern Algorithm Implementation

For the accurate and fast processing of events our algorithm requires several sets of infor-
mation. This information can be extracted from the set of behavioural patterns calculated
beforehand. The following information are needed:

> The set B of all behavioural patterns prescribed by the business process model.

> A dictionary f, that contains the fewest number of behavioural patterns for each activity in
the prescribed business process to an end activity. This means that the minimum number
of following behavioural patterns can be disclosed through a simple look-up of the current
activity or behavioural pattern.

> For each behavioural pattern the dictionary p, contains the minimum number of distinct
prescribed patterns which must be observed before any other activity is observed.

The algorithmic procedure for the online computation of the conformance checking is
detailed in the following algorithm 1. In addition to the aforementioned data the algorithm
requires the event stream. The algorithm initiates the construction of two dictionaries: The
dictionaries D, and D;. The D, dictionary is used to map incoming activities and behavioural
patterns to a given case ID. The second dictionary designated as D; employs the case ID as
the key and maps it to the number of incorrectly observed behavioural patterns.

In order to compute the online conformance checking metrics for each case, the following
steps are calculated perpetually given that the stream of events is unbounded. Upon the
registration of a new event, a check is conducted to identify whether this event constitutes
the initial occurrence of the case. In the event that this is the situation, a new key-value pair
is added to the D, dictionary and the minimal number of behavioural patterns prescribed
for the observed activity is calculated. This computation has been performed in advance,
allowing the information to be extracted from the dictionary p, in which it is stored. The use
of dictionaries enables this operation to be completed in constant time.

Subsequently, the completeness measure is calculated in line 7. The completeness value
quantifies in the interval [0,1] with 1 signifying the trace started at the beginning as intended
by the business process model. The lower the value the greater the distance between the
supposed start and the recorded start of the trace. This is the minimum between 1 and the
total length of recorded behaviour, divided by 1 plus the minimum number of prescribed
behavioural patterns required to reach the earliest observed behaviour within the trace. It was
decided that the algorithm proposed in [BZA+18] should be modified, as the completeness

17

4. Online conformance checking algorithms

Algorithm 1: Adapted Behavioural Patterns Algorithm

Input: B, S, py, fs
1 Initialize map cases D, ; /* Maps activities of same case together x/
2 Initialize map incorrect D; ; /* Maps deviations per cases to integer costs =/
3 while True do

4 (c,a) < S(e;);

5 if c ¢ D, then

6 D, < (c,a);

7 completenes(c) «— min{1, %}

8 else

b — D,(c) v a;

10 if b € B then

1 D,(c) < Dy(c) v a;

12 confidence(c) «— 1 — maxﬁif}s(b),

13 else

14 | Dj(c) < Di(c) + 1;

15 | conformance(c) « %,‘

16 if size of D, and D,; is close to max capacity then
17 | perform cleanup by removing oldest entries
18 end

value determines the distance from the start of the recorded behaviour. As this value remains
constant when additional behavioural patterns are added to a case and is instead set at the
point when the first behaviour is recorded, it was decided that this value should be calculated
at this point.

In the event that a case has already been instantiated and contains recorded behaviour,
the current event’s activity and the most recent activity from the trace are taken and used
to construct the behavioural pattern. Subsequently, the behavioural pattern is audited to
establish whether it resides within the set B, comprising all permitted behavioural patterns
as defined by the business model. If this is the case, the event activity is added to the trace
corresponding to the case and the following metric calculation is performed.

In line 12 the result of the confidence is 1 subtracted by the number of minimal mandatory
patterns from the behavioural patterns in our trace until completion f;(b) over the longest
number of compulsory behavioural patterns in our trace. The confidence value ranges from
[0,1], with 1 indicating that the trace has reached an end activity and thus is finished. A lower
confidence value indicates a higher chance that the trace does not finish fit, w.r.t. the model.

In the event that our most recent behavioural pattern is not part of the set B that entails all
allowed behavioural patterns w.r.t the model the count of the incorrectly observed behavioural
pattern for that case is instead increased.

The following step is the last check each trace undergoes before a new one is accepted. The

18

4.3. Prefix Alignment

Table 4.1. Examples for trace alignments

a|»|d|z|h
tl‘tz‘b;‘»‘tg

3=

conformance measure is calculated in line 15. This is the result of the length of the correctly
observed trace being divided by the sum of all incorrectly observed behavioural patterns
and the length of the correctly observed trace for the case. The conformance value is within
the interval of [0,1]. A value of 1 indicates absolute conformity between the observed trace
and the prescribed behaviour by the process model. Therefore, a lower conformance value
indicates a greater discrepancy between observed and prescribed behaviour. It should be
noted that the conformance value is only calculated based on observed behaviour while the
completeness measure is based on prescribed but unobserved behaviour.

All the information saved and accessed by the algorithm is stored in dictionaries or sets.
This allows access to the information stored in constant time regardless of the size of the
dictionary or set. Further, our calculation is also performed in constant time making our
algorithm suitable for online conformance checking.

4.3 Prefix Alignment

The second implemented algorithm in this paper is the prefix-alignment conformance checking
algorithm. Alignment based conformance checking was first introduced in [Adr14] and has
been adapted to work in an online setting in [ZBH+17]. Its principle idea is the same, i.e.
calculating alignments. Two example alignments built from a trace of events are seen in Table
4.1. These alignments reference the Petri net in Figure 2.2. The alignments are built and played
against the model to check whether they conform to the model or if deviation and, thus, cost
arise.

Considering 3 we can observe that the trace has already recorded deviation. After activity
"a" the next recorded activity is "d". However, as we can see in the Petri net in Figure 2.2
"d" is not an allowed activity to follow after "a". Therefore, we need to find an optimal

n_on

prefix-alignment from "a" to "d". Such an optimal prefix-alignment is 7y, = (b, d). Therefore,
we can observe in our alignment 73 one skipped activity after activity "a". As new activities
constantly come in and add to the cases the algorithm calculates the prefix-alignment based
on all activities recorded from the first activity until the newest addition to the case. However,
as not every activity might conform, an optimal way of determining the compliance of a
new activity is needed. For this, [ZBH+17] assume a @ heuristic algorithm that can compute
approximate prefix-alignments from one activity to another in constant time. In this paper,
however, some prefix-alignments are calculated beforehand. These pre-calculated prefix-
alignments start at an activity and continue toward the end. This set ensures that at least one
prefix-alignment from each activity reaches each succeeding activity. Given these conditions, a

few steps can be performed to ensure that each incoming event is appropriate with reference

19

4. Online conformance checking algorithms

to the process model. Each activity within an event is either in accordance with the case
whereby the subsequent activity is permitted to proceed following the established business
process model or it is not. If it does, the activity forms our prefix-alignment with all our
previously recorded activities for that case. In the event that the case does not conform to the
established business process, for example, if the activity in question should occur at an earlier
or later stage in the process but not in direct succession with the preceding activity within
the case, a "skipped activity" is recorded. In other instances, the activity in question is not
part of the overarching business process. This can result in a deviation from the established
process whereby an activity is recorded that is not permitted under the circumstances. This
additional activity may be attributed to an erroneous execution or simply the result of noise.
Our implemented algorithm performs several checks to determine in which situation the
incoming event lies and proceeds accordingly.

Algorithm 2: Adapted Incremental Prefix-Alignments

Input: B, S, 7(a1,a2) — Ny

1 Initialize 7y post ; /* Creates a map of suffix-alignments from activities */
2 Initialize map case D., ; /* Maps activities of same case together x/
3 Initialize map cost D, ; /* Maps cost to case as integer x/
4 while True do
5 (c,a) < S(en);
6 if ce D, then
7 7 < Dy(c);
8 Dy <;
9 if v + a not an allowed prefix akignment then
10 ‘ D. < D.+7(7,a);
11 else
12 v —a;
13 Dy« ;
14 if a ¢ start activities then
15 | D < D+ 7(start activity, a);
16 if size of D., and D, is close to max capacity then
17 | perform cleanup by removing oldest entries
18 end

4.4 Prefix-Alignment Algorithm Implementation

In order for the continuous monitoring of events from the event stream and their compliance
with the process model to become operational, the algorithm requires the reference process
model as input. Furthermore, a function 7(ay,a) — Np is necessary to identify the optimal
prefix-alignment between one activity within the process model and another activity. Thirdly,
the event stream is necessary to provide the events that are processed. Once these conditions

20

4.5. Token Based Replay

are satisfied, the conformance checking can be initiated. Following the acceptance of a new
event, the first step is to establish whether the event introduces a new case.

If the case is already established and contains a recorded trace, the new activity is added
to the trace. The algorithm then verifies in line 9 if the new prefix-alignment imposes a
new deviation from the process model, i.e. if the new activity is not fit with the previous
activity in the trace. Under the assumption that a divergence has ensued, we calculate an
optimal prefix-alignment between the newest activity in the trace and the activity from the
event. The length of this prefix-alignment is noted down as deviation cost and saved in the
corresponding dictionary.

Barring the event introduces a new case a new prefix-alignment is built based on the
activity from the event. If the first activity in the case is not a start activity as prescribed by
the process model we determine the optimal prefix-alignment from the start activity of the
process model to the start activity of the prefix-alignment in the trace line 15. The length of
the optimal prefix-alignment will be added to our dictionary which tracks the number of
deviations in a prefix-alignment per case.

Identically to the algorithm 1 we perform a clean-up function when our storage memory
reaches its maximum capacity.

To ensure that the algorithm is suitable for the online setting, we use dictionaries to map
the incoming activities to case together as well as map the deviation to a case. In addition, we
perform some preprocessing steps with respect to the function 7(a;y, a2) by calculating some
prefix-alignments beforehand.

4.5 Token Based Replay

Token-based replay is the third and last algorithm we consider in this paper. Token-based
replay in the offline setting was one of the first ways to perform conformance checking
between event logs and a reference process model, e.g. Petri net. The variant tested in this
paper is based on [BA21]. They improved the original token-based replay introduced by
[RAO8]. As mentioned above, token-based replay requires a Petri net with final and initial
marking as well as the event stream to perform compliance checks. Given the Petri net,
token-based replay, as well as the other algorithms, also performs several steps in advance
before running conformance checking on the event stream. The first step is to calculate a
graph G = (V, A) where the vertices V are the places P of the Petri net and A < P x P.
Following, to each arc (p1, p2) € A in the Petri net a transition f(p1, p2) is associated to. With
the defined graph a search algorithm travels along the graph G searching for the shortest
paths between nodes in that graph. The algorithm builds sequences of places (p1,---, pn)
that result in (p;, piy1) € A for any 1 < i < n. These sequences are then transformed into
move sequences (my,--- ,my,_1) of transitions such that m; = (p1, pi+1) for any 1 < i < n.
Given any marking M such that M(p;) > 0 and M(p;) = 0, a marking M! where M!(p,) > 0
could be reached by the continuous activation of transitions in a sequence (my, - -, m,) that
is the shortest path on the graph G between p; and p,. Note that some places could still have

21

4. Online conformance checking algorithms

missing tokens during the activation of the sequence [BA21].

Acknowledging these sequences a trace can be replayed. Whenever a new activity from
the event stream adds to a trace the entire trace is replayed by the algorithm. During replay,
the algorithm tracks several variables. These variables include the amount of consumed token
(cd), the number of produced token (p), the number of missing token (mi) and the number of
remaining token (7). At the start of the replay it is assumed that the initial marking is placed
by the Petri net which also increases p by one. For each step in the trace the algorithm looks
for a transition in the Petri net corresponding to an activity in the trace, at which time the
following can happen:

> The transition corresponds to an activity in the trace and can be fired without the need to
add markings. In this situation the activity sequence fits the Petri net.

> No shortest path between places (pi, p2) could fire, consequently, a token is added to
enable the firing of the transition.

> Not enough markings are produced in the replay of the trace thus far, meaning a token
has to be inserted for the transition to fire.

For each activity in the trace a number of tokens is added in the output of said activity. This
number is added to p. The amount of token consumed to fire the activity is added to cd. If a
deviation occurred and an amount of tokens needed to be added for the activity to be able
to fire, the amount added increases m accordingly. Lastly, if the trace has not reached the
final marking, i.e. the recorded process execution has reached the end of the Petri net and
is therefore complete, the number of remaining tokens in the Petri net are increased to the
value of r. After the replay is completed, these variables are used to calculate the fitness of
the trace and the Petri net.

ftruce = %(- %) + %(1 - %)
The function fi e is calculated after every replay, whenever a new activity is recorded
and added to the trace. As incomplete traces and traces with many concurrent activities
leave tokens at either the end of the trace or after activities that have not been executed,
the remaining token value r might record false positives and therefore lower the overall
conformance score of the trace.

4.6 Similarities between the algorithms

All algorithms implement the same methods for accepting a new trace. A simple method is in
place to ensure that the case ID value is valid, i.e. filled with an actual case ID. Furthermore,
the activity is also being checked for a value. If a value is invalid the method logs an error.
The reason for that is that an activity must have a corresponding case ID, else there is an
activity without a corresponding case, and an event must have an activity, else the case logs
nothing. If both keys in the event have values the event is passed to the individual algorithms
that perform the actual online conformance checking. This greatly varies between all three
algorithms as described in this chapter.

22

4.6. Similarities between the algorithms

All three Online conformance checking algorithms presented in this paper implement the
same method to perform cleanup if the storage memory reaches its maximum value. The
token-based replay algorithm was adapted to implement the same method as the behavioural
patterns and prefix-alignment algorithm. Additionally, the exact condition upon which this
cleanup method is initiated is also the same. This was a deliberate design decision to prevent
any unwarranted deviation from the algorithms that could affect runtime. The aim was to
guarantee that the benchmark tests are not influenced by differences in storage maintenance
and instead assess the actual algorithmic calculation.

23

Chapter 5

Benchmarks

In this section, we explain the premise and setup of our benchmark tests. Following that, we
present the results of the benchmark test and provide an analysis before concluding.

5.1 Experiment

The benchmark tests were performed in a Kubernetes Pod on University servers. The Pods
were given a restraint on their power access, such that the algorithms perform with a single
CPU core with 2.1 GHz and 1 GB of RAM. A total of 12 benchmark tests were performed. All
three algorithms were tested on both Petri nets seen in Figures A.1 and A.2. The algorithms
were tested twice per Petri net, the first time with one deployment and the second time
with three deployments, testing their horizontal scalability. Each test was split into two parts,
with each part lasting 180 seconds, of which 45 seconds were reserved for warm-up. The
warm-up period allowed the algorithm to perform all preprocessing steps required to perform
their conformance checking technique on the stream and to ensure that each container had
properly started.

The intensity of the event stream ranged from 500 events being generated per second
to 1500 events. Theodolite started each benchmark test with 1000 events per second being
generated. If the algorithm managed to process the events without the lag trend, i.e. how
many more events are ready to be processed in t; then where there in t;_1, the second part of
each test would increase the workload to 1500 events per second. If the algorithm did not
process the events fast enough and the lag trend exceeded the set amount the produced load
would be decreased to 500 events per second. The threshold of lag increase was set to 15
events meaning that at the speed of between 500 and 1500 events per second virtually any lag
increase resulted in the algorithm not passing the workload.

The event stream generated events based on two different Petri nets seen in Figure A.1 and
in Figure A.2. We ensured that the Petri nets display different characteristics, i.e. some form of
loops, decision gates, and concurrent activities. The Petri net seen in Figure A.1 implements
two loops. These include going from the activity "Waiting for Material" back to the activity
"Pass to Production”, as well as going from the activity "Waiting for sending" to the activity
"Packaging complete". The second Petri net seen in Figure A.2 includes a concurrency at
the activities "Pay" and "Record", meaning they both need to be executed before the activity
“Manufacture”. The results of our tests are presented below. We first present results related
to only one instance of each algorithm running and being tested on both Petri nets seen in

25

5. Benchmarks

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.1. Single Prefix-alignment algorithm tested on A.1

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.2. Single Behavioural Pattern algorithm tested on A.1

Figures A.1 and A.2. Later we present the results related to each algorithm having three
instances running in different containers simultaneously.

5.2 Evaluation

Due to the inconsistency of Kubernetes creating and closing the containers for the conformance
checking algorithms and the event streams in order, we observe some spikes of sudden lag
record at the beginning or the end of our graphs.

The spike at the beginning denotes an occasional late start of the event stream container by
Kubernetes after the container with the conformance checking algorithm is already running.
The spike at the end is often due to the fact that the container hosting the conformance
checking algorithm is being terminated before the event stream, resulting in the continuous
generation of events with a process present to process them.

26

5.2. Evaluation

18000

16000

SE OO DD D DSBS PP CRHPH O S S D PELOLDD DD S 0SS
ST I I EF ST E IS P FEFFFTFFFS SIS

(a) Lag Record at 1000 events per second (b) Lag Record at 500 events per second

Figure 5.3. Single Token-based replay tested on A.1

(a) Lag Record at 1000 events per second (b) Lag Record at 500 events per second

Figure 5.4. Single Prefix-alignment algorithm tested on A.2

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.5. Single Behavioural Pattern algorithm tested on A.2

27

5. Benchmarks

(a) Lag Record at 1000 events per second (b) Lag Record at 500 events per second

Figure 5.6. Single Token-based replay tested on A.2

We can observe in Figures 5.2a and 5.1a that the prefix-alignment and behavioural pattern
algorithm handle the events coming from the event stream at a thousand messages per
second quite well. As seen in Figure 5.3a the token-based approach already struggles, which
it continues in a lower workload of only 500 messages per second as seen in Figure 5.3b.
While the prefix-alignment and the behavioural pattern algorithms start to struggle at 1.5
thousand messages per second as seen in Figures 5.1b and 5.2b. The behavioural pattern
algorithm still shows a clear trend downward in record lag, despite inexplicable spikes.

Behavioural pattern and the prefix-alignment algorithms performed worse on the Petri
net seen in Figure A.2, which included concurrency. The token-based replay did not process
the starting one thousand events per second based on the second Petri net either as seen in
Figure 5.6a. However, the token-based replay algorithm showed more promising performance
at 500 events per second. While still struggling, the algorithm managed to lower the record
lag at times, which is visualised in Figure 5.6b. Behavioural patterns and prefix-alignment
performed adequately on 1000 events per second based on the second Petri net, as Figures 5.5a
and 5.4a show. However, the prefix-alignment algorithm failed the Theodolites benchmark test
due to its enormous spike in record lag, and did not perform convincingly at 500 messages
per second either (seen in Figure 5.4b). While 1500 events per second led to spikes in the
record lag for the behavioural pattern algorithm observable in Figure 5.5b the algorithm still
recovered after each spike and continued to process more events than the stream produced.

Following the benchmark test of each algorithm with a single instance, we performed
each test again in the same constellation without changing the boundary condition of the
individual tests but for the number of parallel running algorithms. We increased the number
to three conformance checking algorithms of the same type running at the same time for each
test.

Figures 5.7a and 5.10a show that the prefix-alignment algorithm handles the event stream
of 1000 events per second on both Petri nets with a steady decline in record lag. Figure 5.7b
also shows a decline, however, spikes towards the end rapidly increase the record lag. The

28

5.2. Evaluation

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.7. Prefix Alignment with 3 Replica on Petri net A.1

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.8. Behavioural Patterns with 3 Replica on Petri net A.1

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.9. Token-based replay with 3 Replica on Petri net A.1

29

30

5. Benchmarks

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.10. Prefix-alignments with 3 Replica on Petri net A.2

S

(a) Lag Record at 1000 events per second (b) Lag Record at 1500 events per second

Figure 5.11. Behavioural Patterns with 3 Replica on Petri net A.2

Record Lag

SHL DD DS DD DS 5 S
FESESELEFFFE 5

Figure 5.12. Token-based replay with 3 Replica on Petri net A.2

5.3. Result

algorithm was not able to reduce the record lag in time, making it uncertain if it would have.
Figure 5.10b shows a steady decline in record lag, showing that three parallel prefix-alignment
containers can handle what a single container could previously not with the same resources.

Figures 5.8a and 5.11a both show, similarly to prefix-alignment, that the record lag
continuously decreases. While Figures 5.8b and 5.11b follow the trend of the behavioural
pattern algorithm being able to handle the tasked workload, Figure 5.8b does record one
spike, that the behavioural pattern algorithm processes.

Token-based replay passes the Theodolite benchmark test at a workload of 1000 events
per second when running three instances of the algorithm in parallel instances. This can
be observed in Figure ?? where the record lag recedes despite recorded spikes. Figure 5.9a
indicates that 1000 events per second might already be around the maximum workload
the token-based replay algorithm can handle. This is shown by the fact that the record lag
increases and subsides again throughout the benchmark, with no significant difference in
record lag between the beginning and the end. Both Figures 5.9b and ?? support this by
showing that token-based replay can not handle the increased workload of 15000 events per
second.

5.3 Result

The token-based replay algorithm benefits the most from parallelism, significantly reducing
the record lag buildup as well as increasing the number of processable events per second.
The behavioural pattern algorithm showed the least improvement when conducted in a
parallel run of three, only slightly varying in record lag. Prefix-alignments also benefited from
parallelism. However, they benefited slightly more in reducing record lag than behavioural
patterns did, as well as succeeding in the maximum imposed workload.

Table 5.1 summarises whether each algorithm handled each workload, i.e. how many
events the event stream generated per second, in either Petri net. Prefix-alignment algorithm
has been abbreviated to Prefix, while Behavioural Pattern has been abridged to BHP and
Token-based replay has been shortened to TBR. Table 5.1a shows each algorithm with only

Table 5.1. Performance of algorithm on Petri nets with varying degrees of workload

Algorithm | Petri | Workload Algorithm | Petri | Workload
net | 500 | 1000 | 1500 net | 500 | 1000 | 1500
Prefix Al |/ |V X Prefix Al |V |V vV
Prefix A2 |/ |V X Prefix A2 |V |V vV
BHP Al vV V V BHP Al v V V
BHP A2 Vv v X BHP A2 V vV vV
TBR Al | x X X TBR Al |V |V X
TBR A2 X X X TBR A2 Vv vV X
(a) Each algorithm singled instanced (b) Each algorithm with 3 instances

31

5. Benchmarks

one instance. The prefix-alignment algorithm was able to handle up to 1000 events per second
on both Petri nets shown in Figures A.1 and A.2. In this case, it did not manage to pass the
benchmark for a workload of 1500 events per second. The behavioural pattern algorithm has
shown multiple spikes in record lag when performing 1500 events per second on the second
Petri net, however, the first Petri net still showed rapidly decreasing record lag after a spike,
proving that the algorithm can handle the workload. A single-instanced token-based replay
algorithm could not handle any of the workloads we proposed on it.

Table 5.1b displays the result of each benchmark when running three instances of each
algorithm in parallel. Prefix-alignments comfortably handled each workload in each Petri net,
only showing one spike in Figure 5.7b. This showed an improvement over the single-instanced
benchmark, where prefix-alignments did not succeed in a workload of 1500 events per second
in either Petri net. Token-based replay greatly increased its performance due to parallelism.
We can see in Figure 5.1b that the token-based replay is now capable of handling workloads
of up to 1000 events per second. This is in contrast to the single-instanced benchmarks where
token-based replay did not handle 500 events per second.

Behavioural patterns saw the smallest increase in performance by running three instances
of the same algorithm in parallel. The parallelism of running the algorithm three times
resulted in generally lower record lag throughout the benchmarks. It also resulted in the
behavioural pattern algorithm confidently managing a workload of 1500 events per second
on both Petri nets, only showing one spike in Petri net one seen in Figure 5.8b.

It stands to reason that the behavioural pattern algorithm performs the best regarding
workload, out of the three online conformance checking algorithms presented in this paper.
While the performance increase of the token-based replay algorithm with three instances was
significant, it was still outperformed by the behavioural pattern algorithm. However, a general
decrease in performance through parallelism was discovered, making it the right choice over
single-instanced deployment. Considering the nature of event streams, that the beginning of
a case might no longer be recorded, behavioural patterns also provide the added benefit that
the event stream can already run and the conformance comparison of the trace to the Petri net
is not negatively influenced, unlike with token-based replay and prefix-alignment. This leads
to the behavioural pattern being the first choice of the three presented, with prefix-alignments
being a close follow-up and token-based replay trailing behind.

32

Chapter 6

Discussion

In this section limitations in the implementation of our online conformance checking algo-
rithms are briefly discussed. After that, some basic assumptions of knowledge about the
algorithms are defined and explained.

6.1 Limitations

Due to time constraints, an adjustment was made to the prefix-alignment algorithm such that
prefix-alignments are now calculated based on behaviour, as opposed to token replay. This
results in a less precise conformance measure when dealing with concurrent activities.
Further, the behavioural pattern algorithm is not fully optimised for convoluted Petri nets
with a multitude of parallel activities. Both algorithms struggle with concurrency because
they are both based on behavioural patterns which do not offer a precise way of verifying
whether an activity has already passed another concurrent activity without further effort.

/'

Figure 6.1. Short Petri net with one and gate, made with [BZS23]

Take the Petri net seen in Figure 6.1. Derived from this Petri net we can determine the set
of all behavioural patterns comprised of B = (a > b), (a > ¢), (b > d), (b > ¢),(c > b), (c > d).
And the set of all alignments I’ = (a,b,¢,d), (a,¢,b,d). Both these sets are rather unambiguous.
The concurrent activities do not inflate the sets and allow for otherwise unwanted behaviour.
However, should the Petri net display more concurrent behaviour such as seen in the Petri
net seen in Figure 6.2, distinguishing between mere concurrency and deviation will become
increasingly difficult. Take the set of behavioural pattern B = (a > b), (a > ¢), (b > ¢), (b >
f),(b>g)(b>i),b>4d),b>e),(c>b),c>d),(c>e),c>h),(c>f)c>g)d<
e),(d>h),(d>c),d>f),d>g),d>i,e>d),(e>h)e>c),le>f)(e>g),(>
m), (>), (0>), (> f),(h >), (h > i), (f > 8, (f >), (f > b), (f > d), (f > o), (f >

33

6. Discussion

Figure 6.2. Petri net with a multitude of and gates, made in [BZS523]

m, (g > (g > i) (g > b),(g > d), (g >), (g >), (i > h), (i > b), (i > d), (i > e), (i >)
where almost any behaviour is allowed due to concurrency. This leads to an inflated set of

behavioural patterns, in which it is nigh impossible to distinguish whether an incoming new
activity conforms with the process model seen in Figure 6.2. Behaviour allowed by this net is
virtually anything that moves forward in the process.

Another hurdle we encountered were the possible deviation that could occur in an event
stream, which an online conformance checking algorithm must be able to handle. Consequen-
tially, the algorithms were designed to handle “skipped activities”. However, the method for
accepting a new trace, which is the same for all algorithms, filters out all "added activity"
deviations. Further, the simulated event stream in the benchmark tests is not designed to
produce such "added activities" at random. As such, the algorithms are not tested on their
ability to handle this kind of deviation. Nevertheless, they all possess a method for handling
"added activities".

Concerning the potential range of process models we expect a model comprising unique
activity names, ensuring that each activity from the event stream is unambiguously associated
with one activity in the process model. Furthermore, we assume the availability of a Petri
net for our token-based replay algorithm. Additionally, we anticipate possessing knowledge
about the set B of all behavioural patterns.

34

Chapter 7

Conclusion

In this paper, we introduced three popular online conformance-checking algorithms. These
algorithms were chosen based on their number of citations and relevance in the research field.
We implemented and ensured fair testing conditions for all algorithms. Our benchmarks were
designed to test the scalability of each algorithm regarding their ability to handle increasing
workloads, i.e. how many events they could process per second. Benchmark tests were also
performed to test how an increase in simultaneously running instances of the algorithm
would show improved performance over a single instance of each algorithm. The results
show that, albeit closely followed by the prefix-alignment algorithm, the behavioural pattern
algorithm performs best. Further, running the algorithms in parallelism, i.e. having multiple
instances running at the same time, shows an increase in performance across each algorithm,
making it well worth it.

7.1 Future Outlook

As discussed in section 6.1 the prefix-alignment and the behavioural patterns algorithm both
struggle with complex concurrency activities. A possible solution would be to include more
information in the process model, such as time constraints which could exclude some patterns
due to some activities taking as long as other activities take together. Another method is
by moving along the Petri net tracking the tokens fired and checking if certain activities
have already been executed before. The token-based replay alignment algorithm replays
incoming events given all previous activities in the trace and is thus quite stable at handling
concurrency as the algorithm looks for a way to reach the current activity based on the
trace. The prefix-alignment algorithm presented in [ZBH+17] assumes an algorithm that
searches for an optimal prefix-alignment 7 in a trace when a new activity is accepted. In our
implementation, we forfeited the token variant due to time restraints and utilised a method
of finding optimal prefix-alignment using behavioural patterns. In future works, tokens or
time restraints could be included, notice however that token replay is time consuming.
Regarding the prefix-alignment algorithm presented in [ZBH+17] the algorithm assumes
a function @ that heuristically calculates the optimal prefix between two activities that can not
be executed in direct succession with reference to the model. This means that whenever a skip
deviation occurs @ calculates an optimal prefix from the current trace for the case to the new
activity. Because the algorithm does not handle the warm start scenario and needs to be started
before the stream begins either way, it might be feasible to calculate a set of optimal prefix-

35

7. Conclusion

alignments beforehand so that further time can be saved during the execution of the algorithm.

The confidence value of the behavioural pattern algorithm presented in [BZA+18] and
implemented in section 4.1 only considers the length of the trace. This is calculated by taking
the distance from the start of the trace to the end of the process model and the distance from
the current end of the trace to the end of the process model. It does not, however, consider
the amount of incorrectly observed behaviour, nor the ratio of correct observed behaviour to
incorrect observed behaviour. As the confidence value aims at predicting the possibility that
the conformance score remains stable the actual conformance of the current trace might be
incorporated in the future for a more accurate prediction.

Further research can also be conducted to perform these tests with more online confor-

mance checking algorithms, e.g. [SMR20; LBM+21; BC18; MCA14]. The algorithm bench-
marked in this paper could also be imported, with possible improvements, into a standard
framework, such as the ProM tool.
With more online conformance checking algorithms implemented, a deeper set of benchmark
tests might be advantageous. Such benchmarks could include Petri nets with invisible transi-
tions, i.e. transitions that do not correspond to an activity within the business process. Other
option are to make the workload steps finer and lower the distance between each benchmark
test.

36

Appendix A

Petri Nets used for Tests

Below is the first Petri net displaying the process of the first patch of benchmark tests.

Figure A.1. Petri net used for the first set of tests using Theodolite

Following is the second Petri net displaying the underlying process that was used for the
second patch of benchmark tests.

.

Talke Stock

Figure A.2. Petri net used for the second set of tests using Theodolite

37

Bibliography

[Aalll] Wil M. P. van der Aalst. Process mining: discovery, conformance and enhancement
of business processes. Springer Berlin Heidelberg, 2011. 1sBN: 9783642193453. pOT:

10.1007/978-3-642-19345-3.

[Aal12] Wil van der Aalst. “Process mining: overview and opportunities”. In: ACM
Transactions on Management Information Systems 3.2 (July 2012), pp. 1-17. 1ssN:
2158-6578. DOLI: 16.1145/2229156.2229157.

[Aall6] Wil van der Aalst. Process mining. Springer Berlin Heidelberg, 2016. 1sBN: 9783662498514.

DOI: 10.1007/978-3-662-49851-4.

[Adr14] A. Adriansyah. “Aligning observed and modeled behavior”. English. Phd Thesis
1 (Research TU/e / Graduation TU/e). Mathematics and Computer Science,
2014. 1sBN: 978-90-386-3574-3. DOLI: 16.6100/1R776080.

[BA21] Alessandro Berti and Wil M. P. van der Aalst. “A novel token-based replay
technique to speed up conformance checking and process enhancement”. In:
Transactions on Petri Nets and Other Models of Concurrency XV. Springer Berlin
Heidelberg, 2021, pp. 1-26. 1sBN: 9783662630792. DOI: 10.1007/978-3-662-63079-2_1.

[BC18] Andrea Burattin and Josep Carmona. “A framework for online conformance
checking”. In: Business Process Management Workshops. Springer International
Publishing, 2018, pp. 165-177. 1sBN: 9783319740300. DOT: 16.1007/978-3-319-74030-0_12.

[BZA+18] Andrea Burattin, Sebastiaan J. van Zelst, Abel Armas-Cervantes, Boudewijn
F. van Dongen, and Josep Carmona. “Online conformance checking using be-
havioural patterns”. In: Business Process Management. Springer International
Publishing, 2018, pp. 250-267. 1sBN: 9783319986487. DOTI: 16.1607/978-3-319-98648-7_15.

[BZS23] Alessandro Berti, Sebastiaan van Zelst, and Daniel Schuster. “Pm4py: a process
mining library for python”. In: Software Impacts 17 (Sept. 2023), p. 100556. 1SSN:
2665-9638. DOL: 10.1016/].simpa.2623.160556.

[CHO09] Graham Cormode and Marios Hadjieleftheriou. “Methods for finding frequent
items in data streams”. In: The VLDB Journal 19.1 (Dec. 2009), pp. 3-20. 1sSN:
0949-877X. DOL: 10.1007/500778-009-0172- z.

[CSS+09] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu.
“Forward decay: a practical time decay model for streaming systems”. In: 2009
IEEE 25th International Conference on Data Engineering. IEEE, Mar. 2009, pp. 138-

149. DOT: 10.1109/icde.2009.65.

39

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.6100/IR770080
https://doi.org/10.1007/978-3-662-63079-2_1
https://doi.org/10.1007/978-3-319-74030-0_12
https://doi.org/10.1007/978-3-319-98648-7_15
https://doi.org/10.1016/j.simpa.2023.100556
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1109/icde.2009.65

Bibliography

[DSM+19]

[Has21]

[HH21]

[HH22]

[KAH+15]

[KKV03]

[LBM+21]

[Leo22]

[MAEO04]

[MCA14]

[MP95]

[Mur89]

40

Sebastian Dunzer, Matthias Stierle, Martin Matzner, and Stephan Baier. “Confor-
mance checking: a state-of-the-art literature review”. In: Proceedings of the 11th
International Conference on Subject-Oriented Business Process Management. S-BPM
ONE’19. ACM, June 2019. DOI: 10.1145/3329007.3329014.

Wilhelm Hasselbring. “Benchmarking as empirical standard in software engi-
neering research”. In: Evaluation and Assessment in Software Engineering. EASE
2021. ACM, June 2021, pp. 365-372. DOI: 16.1145/3463274.3463361.

Soren Henning and Wilhelm Hasselbring. “Theodolite: scalability benchmarking
of distributed stream processing engines in microservice architectures”. In: Big
Data Research 25 (July 2021), p. 100209. 1ssN: 2214-5796. DOTI: 16.1616/; .bdr.2021.100209.

Soren Henning and Wilhelm Hasselbring. “A configurable method for bench-
marking scalability of cloud-native applications”. In: Empirical Software Engineer-
ing 27.6 (Aug. 2022). 1ssN: 1573-7616. DOL: 10.1007/510664-022-10162- 1.

Jéakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John
L. Henning, and Paul Cao. “How to build a benchmark”. In: Proceedings of the 6th
ACMY/SPEC International Conference on Performance Engineering. ICPE’15. ACM,
Jan. 2015, pp. 333-336. DOI: 10.1145/2668930.2688819.

Victor Khomenko, Maciej Koutny, and Walter Vogler. “Canonical prefixes of petri
net unfoldings”. In: Acta Informatica 40.2 (Oct. 2003), pp. 95-118. 1ssn: 1432-0525.

DOI: 10.1007/s00236-003-0122-y.

Wai Lam Jonathan Lee, Andrea Burattin, Jorge Munoz-Gama, and Marcos
Septlveda. “Orientation and conformance: a hmm-based approach to online
conformance checking”. In: Information Systems 102 (Dec. 2021), p. 101674. 1SsN:
0306-4379. DOT: 16.1016/.is.2620.101674.

Massimiliano de Leoni. “Foundations of process enhancement”. In: Process
Mining Handbook. Springer International Publishing, 2022, pp. 243-273. 1SBN:
9783031088483. DOI: 16.1007/978- 3-031-68848-3_8.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. “Efficient computa-
tion of frequent and top-k elements in data streams”. In: Database Theory - ICDT
2005. Springer Berlin Heidelberg, 2004, pp. 398—412. 1sBN: 9783540305705. pOI:

10.1007/978-3-540-30570-5_27.

Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der Aalst. “Single-entry
single-exit decomposed conformance checking”. In: Information Systems 46 (Dec.
2014), pp. 102-122. 1ssN: 0306-4379. DOI: 10.1616/].is.2014.04.063.

K. L. McMillan and D. K. Probst. “A technique of state space search based on
unfolding”. In: Formal Methods in System Design 6.1 (Jan. 1995), pp. 45-65. 1sSN:
1572-8102. DOT: 16.1007/bf01384314.

T. Murata. “Petri nets: properties, analysis and applications”. In: Proceedings of
the IEEE 77 .4 (Apr. 1989), pp. 541-580. 15sN: 0018-9219. DOI: 10.1109/5.24143.

https://doi.org/10.1145/3329007.3329014
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1007/s00236-003-0122-y
https://doi.org/10.1016/j.is.2020.101674
https://doi.org/10.1007/978-3-031-08848-3_8
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1016/j.is.2014.04.003
https://doi.org/10.1007/bf01384314
https://doi.org/10.1109/5.24143

[RA0S]

[Rei24]

[SMR20]

[VAN9S]

[Vit85]

[WSA+22]

[ZBH+17]

[ZHD21]

Bibliography

A. Rozinat and WM.P. van der Aalst. “Conformance checking of processes based
on monitoring real behavior”. In: Information Systems 33.1 (Mar. 2008), pp. 64-95.
1sSN: 0306-4379. DOT: 10.1016/j.is.2007.67.601.

Hendrik K. Reiter. “Scalability benchmarking of the realtime heuristics miner
implemented as a microservice architecture”. https://oceanrep.geomar.de/id/eprint/
59777/. MA thesis. Kiel University, 2024.

Florian Stertz, Juergen Mangler, and Stefanie Rinderle-Ma. Temporal conformance
checking at runtime based on time-infused process models. 2020. DOT: 16.48556/ARXIV.2608.

07262.

W. M. P. VAN DER AALST. “The application of petri nets to workflow manage-
ment”. In: Journal of Circuits, Systems and Computers 08.01 (Feb. 1998), pp. 21-66.
1SSN: 1793-6454. DOI: 10.1142/50218126698000043.

Jeffrey S. Vitter. “Random sampling with a reservoir”. In: ACM Transactions on
Mathematical Software 11.1 (Mar. 1985), pp. 37-57. 1ssN: 1557-7295. DOTI: 16.1145/3147.

3165.

Indra Waspada, Riyanarto Sarno, Endang Siti Astuti, Hanung Nindito Prasetyo,
and Raden Budiraharjo. “Graph-based token replay for online conformance
checking”. In: IEEE Access 10 (2022), pp. 102737-102752. 1ssN: 2169-3536. DOI:

10.1109/access.2022.3208098.

Sebastiaan J. van Zelst, Alfredo Bolt, Marwan Hassani, Boudewijn F. van Dongen,
and Wil M. P. van der Aalst. “Online conformance checking: relating event
streams to process models using prefix-alignments”. In: International Journal
of Data Science and Analytics 8.3 (Oct. 2017), pp. 269-284. 1ssN: 2364-4168. pOI:

10.1007/s41060-017-0078-6.

Rashid Zaman, Marwan Hassani, and Boudewijn F. van Dongen. A framework for
efficient memory utilization in online conformance checking. 2021. DOI: 10.48550/ARXIV. 2112.

13640.

41

https://doi.org/10.1016/j.is.2007.07.001
https://oceanrep.geomar.de/id/eprint/59777/
https://oceanrep.geomar.de/id/eprint/59777/
https://doi.org/10.48550/ARXIV.2008.07262
https://doi.org/10.48550/ARXIV.2008.07262
https://doi.org/10.1142/s0218126698000043
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165
https://doi.org/10.1109/access.2022.3208098
https://doi.org/10.1007/s41060-017-0078-6
https://doi.org/10.48550/ARXIV.2112.13640
https://doi.org/10.48550/ARXIV.2112.13640

	Introduction
	Background
	Petri net
	Event Logs
	Behavioural Patterns
	Alignments
	Kubernetes
	Kafka
	Theodelite

	Literature Review
	Online conformance checking algorithms
	Behavioural Pattern
	Behavioural Pattern Algorithm Implementation
	Prefix Alignment
	Prefix-Alignment Algorithm Implementation
	Token Based Replay
	Similarities between the algorithms

	Benchmarks
	Experiment
	Evaluation
	Result

	Discussion
	Limitations

	Conclusion
	Future Outlook

	Petri Nets used for Tests
	Bibliography

