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Supplementary Fig. 1. RFs for six stations in EAP and an example of H-κ 

stacking. a P-wave RFs filtered with Gaussian filters for α=1.0, 1.5, and 2.5, 

corresponding to cutoff frequencies of 0.48, 0.72, and 1.24 Hz, respectively. 

The individual RFs are represented by grey wiggles, while the stacked RFs are 

represented by black wiggles with red positive converters. b H-κ stack for 

station HAMR_13 displayed for two different κ intervals. H is the crustal 

thickness which is the sum of Moho depth and topography, and κ=Vp/Vs. Left: 

For a Ps converter at 4.8 s, the maximum stacking amplitude occurs at κ=1.95 

and H=32.0 km. Similarly, for a Ps converter at 7.0 s, the maximum stacking 

amplitude occurs at κ=1.88 and H= 48.3 km. Right: For the search range κ<1.80, 

the maximum stacking amplitude for a Ps converter at 4.8 s occurs at κ=1.69 

and H=44.0 km. Our preferred crustal thickness is 48.3 km after interpolation 

based on gravity data (Supplementary Fig. 11). 
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Supplementary Fig. 2. Comparison between observed and synthetic RFs. 

Station locations are shown in Fig. 1. a, b Velocity models for calculation of 

synthetic RFs; solid line - station AHLT, dashed line - station HAMR. Red area 

in Vp/Vs with high ratios is typical of middle crust with partially molten bodies 

around depths of 20-30 km. c, d Comparison between the synthetic (right) and 

observed RFs (left) for the two stations. 
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Supplementary Fig. 3. Velocity inversion of RF for station HAMR based 

on linear and non-linear methods. a Linear inversion1 with a Gaussian filter 

of 2.5. Upper panels: Left panel shows the inversion result for the same 

parameters as used in an earlier study2. Middle and right panels show results 

for deeper ranges of the parameter space set to 50 and 56 km, respectively. 

Lower panels show the fit between observed RF (black line) and synthetic RF 

for the model resulting from the inversion (red line). b Inversion of RF by the 

transdimensional Markov – chain Monte Carlo (MCMC) method3 for an initial 

model as in Supplementary Fig. 2b. Upper panels show resulting vertical Vs, 



Vp, and Vp/Vs profiles, illustrated by probabilities with the average models 

shown by blue line; depths to the two main crustal layers are illustrated. Lower 

panel shows the correlation between observed RF (black line) and the RFs 

considered by the inversion algorithm, illustrated by probability. 

  



 

Supplementary Fig. 4. Vertical Vs, Vp, and Vp/Vs profiles obtained from 

MCMC inversion of the RFs at the seismic stations in EAP. Vertical profiles 

are shown for individual stations (colour-coded). Dashed boxes - typical Vs 

variation in the low-velocity layer at 20-30 km depth, and Vp variation at 30-50 

km depth in the high velocity lower crust. 
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Supplementary Fig. 5. Gravity test across the EAP. a Topography within a 

   

the profile in black. Abbreviations: BM –  Bitlis Massif, NWIF – NW Iranian 

Fragment. b, c Long-wavelength filtered Bouguer gravity anomaly (thick grey 

line) with calculated gravity response for two models corresponding to different 

density values (in g/cm3) of the lower crust (D2) and upper mantle (D1). b 

Preferred crustal model with Moho at M2 (bottom panel); it is consistent with 

the RF phases and the velocity model derived from synthetic RF test (thick 

vertical black lines). The exact density of the lower crust depends on the mantle 

density. D2=3.05 g/cm3 for the underplated lower crust if D1=3.20 g/cm3 for the 

hot mantle4-7. D2=3.10 g/cm3 for the underplated lower crust if D1=3.15 g/cm3 

for an extremely hot mantle, as indicated by the extremely weak Ps converter. 

c Alternative, unrealistic model assuming that the Moho corresponds to earlier 

interpreted, strong Ps phase at about 5 seconds at M1 (Vp/Vs ≈ 1.73; H ≈ 44 

km). The required lower crustal density of 2.70 g/cm3 makes it impossible to fit 

the gravity anomaly (blue and green lines in the upper panel). Instead, a lower 

crust with a density of 2.95 g/cm3 is required to match the hot mantle density of 

±40 km-wide corridor along the profile (in grey) with actual topography along 



3.20 g/cm3, in which case the amplitude of the calculated Ps phase for Moho 

will be weak. Further, continuous positive Ps converters should be observed at 

the top of the high-density lower crust, but the RFs show a continuous negative 

Ps converter (marked by question marks). Therefore, this “alternative” model is 

unrealistic. 
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Supplementary Fig. 6. Petrological interpretation of seismic wave 

velocities. a S-wave velocity (Vs) versus fraction of granitic melt8 at 

temperature and pressure conditions corresponding to 30 km depth in EAP. For 

a dihedral angle of 20–40° and aspect ratio of melt inclusions α=0.10–0.159, 

 

3.33 km/s corresponds to 3-13% melt, and Vs=3.5 km/s corresponds to a melt-

free environment. b Vs versus Vp based on our seismic-gravity results (circles) 

together with literature data8 for granites, mafic rocks and eclogites (see 

legend). Blue area cover the intervals observed in seismic tomographic 

models10. Most of the mafic rocks, including amphibolite and gabbro, have Vp 

in the interval of 6.6–7.2 km/s, which correspond to the values in a tomographic 

P-wave velocity model10 for the lower crust as well as our synthetic RF model 

(7.2 km/s). 

  

Vs=3.0±0.1 km/s corresponds to 7–14% partial melt. Our observed Vs of 2.96-
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Supplementary Fig. 7. Distribution of magmatic ages ≤12 Ma in a ±100 km-

wide corridor (dotted lines) along the profile. Magmatic activity began in the 

north at about 12 Ma and progressed southward with time. 
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Supplementary Fig. 8. Free air gravity anomaly and topography in (a) EAP, 

(b) Andes and (c) Tibet (cf. Fig. 5). For each location upper panel shows 

observed (grey line) and smoothed (red line) free air (F.A.) gravity anomaly. 

Lower panel shows observed (grey line) and smoothed (red line) topography 

together with topography calculated by assuming isostasy for the models in Fig. 

5 (stippled blue line), and additionally taking the smoothed free air gravity 

anomaly into account (stippled black line). All smoothing is done by wavelength 

filtering with a cut-off at 48 km. Note that the isostatic topography is calculated 

at reference points with horisontal crustal layers.  
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Supplementary Fig. 9. RFs calculated with different deconvolution 

methods. a Event distribution for station HAMR. b Initial radial RF results 

based on time-domain interactive deconvolution11. c Selected RFs, after quality 

check, with the P wave arrival time aligned at zero time. d Radial RFs by 

multiple-taper correlation (MTC)12 calculated in the frequency domain and 

stacked in 5-degree bins. The two methods lead to comparable results. 
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Supplementary Fig. 10. Sensitivity analysis of H-κ stacking at station 

HAMR versus average crustal Vp. Black error bars show best fit solution with 

uncertainty based on H-k stacking with Vp between 6.0 and 6.6 km/s, colored 

bars – uncertainty based on the result from transdimensional MCMC inversion. 

Average uncertainty of ±0.2 km/s in crustal Vp corresponds to a deph 

uncertainty of ±1.2 km  at ~30 km depth (bottom of layer with partially molten 

pockets) and to ±1.7 km ~50 km depth (Moho interface). H values calculated 

for average crustal Vp=6.3 km/s fit the two velocity jumps in the RF inversion.  
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Supplementary Fig. 11. Best fit empirical parameters linking Bouguer 

gravity anomaly with RF Moho depth in EAP. a Long-wavelength Bouguer 

gravity anomaly along the profile in Fig. 1 with stations marked by black dots. b 

All possible Moho depths from H-k stacking for either different Vp/Vs (red and 

grey circles) or different Ps phases (crossed grey circles). Blue symbols show 

the gravity interpolated depths. Stippled line through red points show preferred 

Moho depth based on the gravity interpolation method13. This method assumes 

a local linear relationship D=(ΔgB - a)/b between the Bouguer gravity anomaly 

(ΔgB) and the depth to the Moho (D), and parameters a and b are determined 

empirically from the data. c, d Empirically a and b are determined by different 

RF candidates in Supplementary Table 1: c High Vp/Vs group, d Moderate 

Vp/Vs group. 
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Supplementary Fig. 12. Constraints on the vertical extent of LVZs by two 

non-linear inversion algorithm. a, b Average Vs models inverted by the 

Neighbourhood Algorithm (NA)14,15 and transdimensional MCMC algorithm. For 

NA: the Vp/Vs for the best-fit velocity structure is shown by blue lines, the 

yellow-green gradient density plots illustrate the proportion of better-fitting 

models in that region. a Using the default velocity search parameters, the 

inversion result by NA and MCMC algorithm show strong agreement, except 

that the NA cannot identify the lower LVZ due to its limitation to six layers.  b 

Merging the uppermost 2 layers into a single layer for the NA allows detection 

of the lower LVZ in the mantle, and the NA inversion results show same velocity 

jump at results from MCMC although the absolute values are shifted. c Plot of 

the MCMC result (black lines) as in Fig. 3c with the result from the NA in white 

(using the same searching parameters as in a). The depth and vertical extent 

of the low-velocity layer beneath each station are similar for the two non-linear 

inversion methods. 



Supplementary Table 1. Details of the RF interpretation. Symbols “#” and “*” after the acquisition period refer to sources of data 

(IRIS and Kandilli Observatory, respectively), ΔgB = Bouguer gravity anomaly. The bold H-κ pairs are the final values selected in this 

paper. 

Duration St._No. Lon. (°)  Lat. (°)  Ele. (m) 
Δg B 

(mGa l )  
RFs: Ps delay time (s) | Amplitude 

One Ps with multiple H-κ pairs 
H-κ (Ps) 

High Vp/Vs group 
H-κ (Ps) 

Moderate Vp/Vs group 
H-κ (Ps) 

1999-2001# MRDN_1 40.70 37.29 674 -58.2 (4.7 | 0.06) (5.9 | 0.01) (7.7 | 0.02)  36.1-1.78 (4.7s) 41.2-1.68 (4.7s)    
  

2008-2009* MARD_2 40.78 37.31 1290 -59.6 (3.1 | 0.01) (5.1 | 0.09) (6.7 | 0.00)  36.5-1.84 (5.1s) 40.8-1.75 (5.1s)    
  

1999-2001# KYPR_3 41.17 37.56 1179 -73.6 (3.1 | 0.02) (4.4 | 0.09) (6.5 | 0.03) (9.8 | 0.04)  36.1-1.79 (4.4s)     
  

1999-2001# KTLN_4 41.71 37.95 791 -101.6 (4.5 | 0.07)  39.9-1.71 (4.5s) 35.4-1.80 (4.5s)    
  

1999-2001# BYKN_5 41.78 38.17 816 -112.7 (4.6 | 0.11) (9.7 | 0.08)  40.6-1.69 (4.6s) 33.0-1.85 (4.6s)    
  

1999-2001# BTLS_6 42.12 38.43 1722 -131.3 (5.4 | 0.11)  37.8-1.89 (5.4s)     
  

2012-2012# GURO_7 42.03 38.55 1388 -133.1 (5.9 | 0.10)  41.1-1.88 (5.9s) 33.3-2.08 (5.9s)    
  

2008-2009* TATV_8 42.27 38.51 1831 -137.3 (3.6 | 0.17) (6.0 | 0.07) (9.1 | 0.01)     28.7-1.75 (3.6s) 46.8-1.75 (6.0s) 
  

1999-2001# AHLT_9 42.48 38.75 1738 -148.2 (4.0 | 0.13) (6.4 | 0.01) (8.0 | 0.02) (9.6 | 0.05)     30.3-1.77 (4.0s) 49.9-1.76 (6.4s) 
  

1999-2001# DGSU_10 42.73 39.13 1646 -158.0 (5.5 | 0.09) (8.2 | 0.01) (9.8 | 0.06)  49.5-1.68 (5.5s) 44.5-1.75 (5.5s) 38.2-1.88 (5.5s)   
  

2008-2009* TUTA_11 42.81 39.40 2154 -159.8 (4.6 | 0.12) (6.8 | 0.03) (8.4 | 0.04)     35.3-1.80 (4.6s) 48.0-1.88 (6.8s) 40.2-1.70 (4.6s) 56.0-1.75 (6.8s) 

2011-2011* AGRB_12 42.99 39.58 1820 -159.9 (3.0 | 0.05) (4.3 | 0.00) (5.4 | 0.12) (6.9 | 0.16) (8.6 | 0.01)    35.5-1.89 (5.4s) 49.0-1.84 (6.9s) 44.4-1.71 (5.4s) 56.7-1.72 (6.9s) 

1999-2001# HAMR_13 42.99 39.61 1714 -159.6 (4.8 | 0.10) (7.0 | 0.06) (9.6 | 0.07)     32.0-1.95 (4.8s) 48.3-1.88 (7.0s) 44.0-1.69 (4.8s) 57.4-1.74 (7.0s) 

1999-2001# CMCY_14 43.20 39.92 1995 -155.5 (3.1 | 0.00) (4.5 | 0.04) (6.5 | 0.05) (8.1 | 0.01) (9.9 | 0.11)      37.4-1.72 (4.5s) 54.6-1.73 (6.5s) 

1999-2001# KOTK_15 43.01 40.22 1396 -150.9 (5.1 | 0.07) (7.1 | 0.02)     36.4-1.87 (5.1s) 50.7-1.85 (7.1s) 44.4-1.71 (5.1s) 57.4-1.75 (7.1s) 

2009-2009* DIGO_16 43.37 40.41 2278 -145.0 (3.1 | 0.14) (5.2 | 0.22) (7.4 | 0.05) (9.4 | 0.11)  42.5-1.75 (5.2s)     
  



Supplementary Table 2. Parameters for linear inversion of station 

HAMR. 

maximum cubic perturbation 0.75 

stop perturbing at this velocity (km/s) 8.5 

maximum random perturbation (in % of cubic perturbation) 20 

number of iterations per inversion 4 

smoothness trade-off parameter 0.1 

number of inversions (x 4 perturbation scheme) 24 (x 4) 

singular value truncation fraction 0.01 

high-pass filter the waveforms (y or n) n 

horizontal slowness (ray parameter) 0.06 

waveform delay 0 

gaussian width factor 2.5 

 

  



Supplementary Table 3. Parameters for transdimensional Markov – 

chain Monte Carlo inversion. 

N_BURN: iteration number during a burn-in period 300000 

N_ITER: iteration number after the burn-in period 800000 

interval of iterations to save sampled model 200 

start and end of time window to be analysed 0-25 

Parameter choice for the prior probabilities  

Min. and Max.  of interfaces 1-41 

Min. and Max. of interface depth (km) 0-80 

Min. thickness of layer to be allowed 0.05 

standard deviation for dVs prior (km/s) 0.1 

standard deviation for dVp prior (km/s) 0.1 

Parameter choice for proposals  

fixed noise level 0.01 

standard deviation for depth (km) 0.02 

standard deviation for dVs (km/s) 0.01 

standard deviation for dVp (km/s) 0.01 

Additional criteria  

VP range 0.5-8.9 

VS range 0.5-5.0 

VP/Vs range 1.5-3.0 

Initial velocity model  

Stations within EAP Supplementary Fig. 2 

Stations outside EAP ak135 Earth Model  
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