OPPLA

Markus Pahlow
July 6, 2023

Please note: This manual uses angle brackets <> to denote placeholders, e.g., oppla_<DATE>.tar.bz2 could be
expanded to oppla_2020-04-14.tar.bz2, and square brackets [] denote optional input.

Contents
[1 Obtaining and Installing OPPLA| 1
2 Running OPPLA| 2
2.1 Prerequisites| 2
211 Theinitial-conditionsfile] L oo 2
212 Theforcingfile] 2
2.2 Command-lineoptions| 3
2.3 Namelists. o e 3
3 Adding a Plankton Group| 12
31 Addanewnamelisttopfn|. L 12
.27 Add a profile to the initial-conditions file ifn] 12
3.3 Add the new group (species) to the plankton community|. 12
|4 The R oppla package| 12
4.1 Creating and modifying forcing files| o o o o o 12
4.2 Reading and processing model outputinR| oo o o o oo oL 13
42.1 Readingmodeloutput| L 13
4.2.2 Time sli nd initial-condition files|. L o oL oo 13
4.2.3 Time averages and climatologies| L o L o 13
424 Verticalintegrals| 13
425 Levelandtileplots| L 14
42.6 Namelistfiles] 14
[5_The Matlab oppla packages| 14
5.1 Reading modeloutput| 14
5.2 Climatologies| 14
5.3 Oppla database (odb) functions|. L 15
|6 Parameter estimation with a genetic algorithm| 15
[6.1 Suggested procedure| 16

1 Obtaining and Installing OPPLA

You can get oppla either as a tar file or via git. If you have a tar file, execute
tar xf oppla_<DATE>.tar.bz2
which unpacks all files into a folder named oppla. You can also obtain oppla from our gitlab repository with

git clone https://git.geomar.de/markus-pahlow/oppla.git [<OPPLA>]

which creates the folder oppla (or <OPPLA> if specified) and installs all files there. Make sure that oppla (or
<0OPPLA>) does not exist, as this will fail if oppla (or <OPPLA>) exists and is not an empty folder.

Oppla depends on the NetCDF and UDUNITS2 libraries, which must be installed prior to compiling oppla. If
these libraries are installed but make complains that it cannot find them, try adding the absolute path(s) of their
folder(s) to the LIBRARY_PATH and DYLD_LIBRARY_PATH or LD_LIBRARY_PATH environment variables in your shell’s
initialisation file (e.g., ~/ .profile, ~/ .bash_profile, or ~/.zprofile). There you should also set the environment
variable FC to the name (path) of your Fortran compiler.

Assuming that oppla was unpacked/downloaded to the folder oppla inside your home directory, the code can
be compiled and the R and Matlab oppla packages (and dependencies) installed with

cd ~/oppla
make

You need to run make after every update of the Fortran or R code, e.g., after git pull. The R and Matlab packages
will be installed only if make finds R or matlab in your $PATH.

2 Running OPPLA

2.1 Prerequisites

An oppla simulation requires at least 3 files, a control file (Fortran namelist format, default: oppla_control.nml,
Section[2.3), an initial-conditions file (NetCDF format, Section[2.1.1)), and a file with physical boundary conditions
(forcing data, Section2.1.2). All namelists can be in the control file but some, namely those defining the plankton
functional types (namelists dic, bac, det, dom, cfo, and cmo) can also go into a separate parameter file (pfn). The
name of this parameter file can be passed via command-line option -p (Section or by setting pfn in namelist
files (Table[). The contents of the namelists are detailed in Section 2.3 below.

2.1.1 The initial-conditions file

This is a NetCDF file with datasets defining the initial conditions. It can be created from oppla output in R with
oppla: :oppla_icf (). An oppla output file can also be used directly as an initial-conditions file, e.g., to continue a
simulation. The name of the initial-conditions file is stored in the Fortran variable ifn, which can be provided with
command-line option -i or in namelist files. The initial-conditions file contains datasets for longitude, latitude,
time, and depth, whose actual names can be specified in namelist start (Table[7])). Longitude and latitude are scalar
datasets. Time can be a scalar or a vector. If it is a vector, the time slice for the initial conditions can be selected
with parameter tin in namelist timing (Table[3]). The depth dataset is a vector defining the depth structure of the
1-D grid. An optional depth edges dataset specifies the boundaries between the grid cells. If missing, the depth
edges are calculated assuming that they lie midway between adjacent grid-cell centres. The depth structures of the
initial-conditions and the forcing-data file must match exactly.

The remaining datasets are the initial conditions for the state variables of the model. Each of these is a vector
or time-depth matrix with the same number of depth levels as the depth dataset. The datasets are associated with
the state variables via namelist coco (Table[J). Datasets not associated in namelist coco are ignored. Thus, it is
possible to use the same initial-conditions file for simulations with different plankton communities. Namelist coco
also links the functional types with their specific parameter sets via the species entries in the namelists bac, det,
dom, cfo, and cmo, each of which can occur multiple times in the control or parameter file (Fig. .

2.1.2 The forcing file

This is another NetCDF file with datasets defining the boundary conditions, i.e. temperature, salinity, vertical eddy-
diffusion coefficients and velocities, and surface and bottom boundary conditions and fluxes (surface irradiance,
wind, etc., see Table @ Constant surface boundary conditions specified in namelist envi (Table|8)) will be used if
not provided in the forcing file. The forcing file must contain datasets for depth, time, latitude, longitude, and the
depth dataset must match that in the initial-conditions file. The names of these are specified in namelist physics,
where also the physical forcing datasets are selected (Table[f]). Alkalinity is a special case, as it can be provided in
the forcing file, as either surface or profile (forcing) data in namelist physics, but it can be also a state variable,
which is activated by specifying 'alkalinity' in the dima vector in namelist coco (Table[d]) and adding alkalinity
to the initial-conditions file. Only one of these is allowed.

2.2 Command-line options
The general syntax for an oppla simulation is
<path to oppla> [<options>] [<control file>]

where <path to oppla> is the full relative or absolute path (including the executable name, oppla) to where
the executable resides, <options> can be any combination of the options shown in the following table, and the
<control file> (default: oppla_control.nml) is a Fortran namelist file. Note that a <control file> must be
present in the current working directory and that its name must be oppla_control.nml if it is not named in the
command line.

Table 1: Command-line options and corresponding namelist variables in the <control file>.

Option Variable Namelist Default

-d data dfn files physical forcing data file in NetCDF format

-i init ifn files file with initial conditions (NetCDF)

-0 output ofn* files output file name (NetCDF)

-p param pfn files <control file> plankton parameter file

-cor-r resume suspended simulation (initial conditions are

read from the end of the output file; option -i and
ifn in namelist files (Table[2) are ignored)

-f overwrite output file if it exists
-m soma fluxes .FALSE. write source and flux matrices to output file
-v .NOT.quiet vode quiet = .TRUE. show DVODE errors and warnings

*It is recommended to specify ofn as a relative path. If ofn is an absolute path, dfn, ifn, pfn and the
<control file> should also be specified as absolute paths as otherwise oppla cannot determine their locations
relative to ofn.

Pressing ‘CTRL-C’ terminates program execution after the next output step (dto in namelist timing). Pressing
‘CTRL-C’ a second time terminates execution as soon as possible. To resume a simulation suspended with ‘CTRL-
C’, just append -r to the command line. To extend a completed simulation, use -r and increase end in namelist
timing (Table[3).

2.3 Namelists

The control file is in Fortran namelist format. It can contain entries for all other command line options in its namelists
files (Table[2)) and start (Table[7)). Command-line options override settings in the control file. Namelist vode
(Tablef)) is for DVODE settings and physics (Table[6)) for selecting specific datasets, bottom boundary concentra-
tions and surface fluxes in the physical forcing data file. The “Symbol” columns in Tables[15/and [14] (namelists cfo
and cmo) refer to the symbols used in equations.pdf.

Table 2: Namelist files in subroutine plankton_init (module plankton), to be placed in the control file.

Parameter Default Description
dfn* physical forcing data file in NetCDF format
ifn* file with initial conditions (NetCDF); this can be the output from a previous

run, e.g., for spin-up

*

ofn output file name; should be a relative path if any of the other file names are

pfn* <control file> file with namelists parphy, parzoo, pardom, parfrac

*File names may start with a ~, a \, or an environment variable, e.g., SHOME, but this is not recommended for ofn
as it results in an absolute path, see also note below Table

Table 3: Namelist timing in subroutine plankton_init (module plankton), to be placed in the control file.

Parameter Default Description

dto 1 h output time step
start 0 d start of simulation relative to the origin of the forcing file time units
end — end of simulation relative to the origin of the forcing file time units
tin 0 d time ofinitial conditions relative to the origin of the initial-conditions file (ifn) time units
timeout 0 h max. time allowed for one dvode step
Initial conditions Namelist coco Parameter namelists
&bac
DOM = 'DOM',
DIC species = 'bac',
lambda = 10.0 'm3 molC-1"',
/
DOM_C
DOM N &coco &det .
DOM_P dima = 'DIC', '02', species = 'det',

decay = 'DOM',

'DIN', 'DIP',
(bac_C) <\dom' DOM', /
bact = 'bac',
det C &cmo
det N detr = ‘'det', species = 'phy_s',
det P ‘/'//c’mo/='phy s', / A0 = 100. 'm3 molC-1 4-1',
det_Chl :
— 1 h 1! ,
det_PIC P /
cfo = 'zoo_s',
&cmo

'zoo_1'
species = 'phy_1',
A0 = 80. 'm3 molC-1 d-1',

~

&cfo

species = 'zoo_s',

Imax = 3. 'd-1',

phi = 'phy_s' 100 'm3 molC-1',
'bac' 20 'm3 molC-1',

~

zoo_s_C

&cfo

zoo_l_C species = 'zoo_l1',

Imax = 5. 'd-1',

/

Figure 1: Namelist coco selects (groups of) state variables from datasets in the initial-conditions file (left) and
associates the functional groups with their parameters via the species entries of the corresponding parameter
namelists (right). The species entries also establish links among functional types, e.g., between the zooplankton
food preferences (phi) and the corresponding prey types.

Table 4: Namelist vode in subroutine dvode:ode:read — read_ode (module dvode), to be placed in the control

file.
Parameter Default Description
atol 1x1077 absolute tolerance; if atol < 0 then —atol is multiplied with the initial values
rtol 1x107° relative tolerance for one time step (dto/nto)
mxatol 10 x atol maximum absolute tolerance
mxrtol 10 x rtol maximum relative tolerance
itask 4 task index for DVODE
0: overshoot and interpolate
1: limited overshooting (don’t overshoot sunrise and sunset)
how to treat the Jacobian
jsv 1 0: don’t save Jacobian
1: save Jacobian
ho 0 s size of first step
hmax 0 s maximum allowed step size
hmin 0 s minimum allowed step size
meth 1 integration method
0: implicit Adams method
1: method based on backward differentiation formulas
miter 0 corrector iteration method
0: functional iteration (no Jacobian)
1: chord iteration with user-supplied full Jacobian
2: chord iteration with internally-generated full Jacobian
3: chord iteration with internally-generated diagonal Jacobian
4: chord iteration with user-supplied banded Jacobian
5: chord iteration with internally-generated banded Jacobian
6: chord iteration with user-supplied sparse Jacobian
7: chord iteration with internally-generated sparse Jacobian
mxstep 500 maximum number of steps for one call to dvode
mxhnil 0 maximum number of messages printed per problem
maxord 12 maximum order: < 5 for non-stiff problems, < 12 for stiff problems
quiet F whether to suppress DVODE error messages
F corresponds to command-line option —v
T corresponds to command-line option —q
constr T whether to constrain concentrations and fractions explicitly

Table 5: Namelist start in subroutine innf (module onf), to be placed in the control file.

Description

name of time dataset in dfn

name of depth dataset in dfn

Parameter Default
time 'Time'
depth 'Depth'

lat 'latitude’
lon 'longitude’
svgroup "

name of latitude dataset in dfn

name of longitude dataset in dfn

name of state-variables group in ifn and ofn

Table 6: Namelist physics in subroutine innf (module onf) = states’open, to be placed in the control file.

Parameter Default

Description

advect 'CD'
bottom*

clsbot .FALSE.
depth 'Depth'
forcing*

fPAR 0.43

lat 'latitude’
lon 'longitude’
profile*

surface*

surflx*

time 'Time'

name of advection scheme; 'CD': modified central differences, 'upwind' (default),
or 'dummy ': no advection

types and names of bottom-boundary datasets; the types must be names of state
variables and the names are the corresponding datasets in file dfn

flag indicating whether the bottom of the model domain is closed
name of depth variable in file dfn

types and names of gridded (depth-time) forcing datasets in file dfn; types can be
'Alkalinity'’, 'Salinity', 'Temperature', 'VDC': vertical eddy-diffusion coef-
ficients, 'Velocity': vertical velocities

PAR fraction of SWR
name of latitude attribute in file dfn
name of longitude attribute in file dfn

types and names of temporally constant vertical profiles in file dfn; types can be
'Alkalinity'’, 'Salinity', 'Temperature', 'VDC': vertical eddy-diffusion coef-
ficients, 'Velocity': vertical velocities

types and names of surface and latitude datasets:

type description

'avgPAR' or 'avgSWR' average daytime surface PAR or SWR (W m~2)
'Ice' surface ice cover fraction (1)

'Wind' wind speed at 10m (ms~!)

'Pressure’ surface pressure (Pa)

'co2! atmospheric pCO, (ppm)

'Alkalinity'? surface alkalinity (mmolm™3)

"law' light attenuation coefficient of water (m~1)
'Latitude'$ latitude (°N)

and the names are the corresponding datasets in file dfn

types and names of surface-flux datasets; the types must be names of state variables
and the names are the corresponding datasets in file dfn

name of time variable in file dfn

*List whose elements have two components each, a type and a name. The type is the kind of data and the name is
the name of a dataset in the physical forcing file. For example, the following selects datasets Temperature, D, and
dswrf _NCEP in the forcing file and associates them with Temperature, VDC, and avgSWR, respectively, in oppla:

&physics
forcing
surface

/

'Temperature' 'Temperature', 'VDC' 'D',

'dswrf_NCEP'

*Only if alkalinity is not a state variable.
SLatitude changes on a daily time scale only.
fSWR will be converted to PAR by multiplying with £PAR.

Table 7: Namelist f1uxes in subroutine plankton_init (plankton.£90), to be placed in the control file (optional).

Parameter Default Description

flux_depth all vector of (approximate) depths for which to write vertical fluxes to ofn
flux_name 'flux' name of the flux 3D state-depth-time array of physical fluxes written to ofn

soma .FALSE. flag indicating whether to write the flux and source arrays (flux and soma) to ofn
soma_name 'soma' name of the soma array written to ofn

state_name 'States' mname of the dimension for state-variables in the source matrix soma

Table 8: Namelist envi in plankton_init (module plankton), to be placed in the control file.

Parameter Default Description
atmprs 1013.25 hPa atmospheric pressure*
bottom 0 name-value-units vector* of constant bottom boundary conditions
co2 370 ppm CO, concentration in air*
daylen 0.5 day length (only for artificial light cycle)
daylength 'Brock81' day-length function
'Brock81': day length after Brock ({1981))
'Forsythe95': day length incl. twilight after Forsythe et al. (1995])
dicy . diurnal light cycle
"' or 'none': constant light
'Brock81': natural light cycle after Brock (1981))
'MesoAqua': light cycle for MesoAqua experiments
'LD': fixed rectangular light-dark cycle
fsfalk 0 name-value-units vector* of alkalinity surface-flux factors
kag — aggregation kernel (used only if not set in namelist det)
lachl 16 m? (g.Chl)~" light-attenuation coefficient of Chl
lacw 004 m! light-attenuation coefficient of water
lapon 16 m? (mol.N)™" light-attenuation coefficient of PON
latdeg 0 °N latitude*
londeg 0 °E longitude™
nbfish 0 number of boxes (layers) with fish
PAR 0 Wm—2 surface irradiance™
potalk — potential alkalinity"
ptl 0.8333 degrees twilight parameter for day-length function 'Forsythe95'
salinity — salinity™
temperature — temperature
totalk — total alkalinity®
vdc 0 m?s7! vertical eddy-diffusion coefficient*
ice 0 surface ice cover fraction™
wind 0 ms~! wind speed at 10m*
velocity 0 ms~! vertical velocity™

*used only if not in forcing file

fused only if alkalinity is not a state variable and not in forcing file

*each element has three parts: name, value, units

Table 9: Namelist coco (community composition) in plankton_init (module plankton), to be placed in the control
file.

Parameter Default Description

dima D vector of dissolved-matter types, e.g., 'DIC', 'DIN', 'DIP', '02', ...
dom n name of dissolved-organic matter type

bact i vector of bacteria species names

detr " vector of detritus-compartment names

cmo v vector of phytoplankton and diazotroph species names

cfo v vector of zooplankton species names

The names in dima must be names of datasets in the initial-conditions file ifn. The names in the other entries are
base-names of such datasets. For example, if one of the species names in cmo is 'phy', the variable species in one
of the cmo namelists (Table[I4) must be set to 'phy ', and ifn must contain four datasets named 'phy_C', 'phy_N',
'phy_P', and 'phy_Chl'. For base-names in dom and detr there should be three datasets named, e.g., 'det_C',
'det_N',and 'det_P', and for bact and cfo it is one, e.g., 'zoo_C'. See also Fig.

Table 10: Namelist dic in subroutine indic (module dic), to be placed in parameter file pfn.

Parameter Default Description

niter 2 number of iterations for pH calculation
pH 8.1 initial guess for pH

pHfun 'Munhoven 2013' function for calculating pH

'Follows 2006': Follows, Ito & Dutkiewicz (2006)
'Munhoven 2013': Munhoven (2013)

ul0 0 ms! wind speed at 10m
rfrnsi 1 molmol™" N:SiRedfield ratio
rfrnp 16 molmol™" N:P Redfield ratio
pvfun 'LM86" piston velocity function

'LM86': Liss & Merlivat (1986))
'w92': Wanninkhof ((1992))
'WG99': Wanninkhof & McGillis (1999)

Table 11: Namelist dom in subroutine bac:dom: read — dom_read (module bac), to be placed in parameter file pfn.

Parameter Default Description

ldlc 0 m2d-'W-! abiotic light-dependent lability decay rate of DOC
1dln 0 m?d~!'W~! abiotic light-dependent lability decay rate of DON
trlc 0 dt transformation rate from refractory to labile DOC

trln 0 d! transformation rate from refractory to labile DON
T 'Eppley temperature function

Q10 1.89 Q1 of the temperature function

Tref 27 °C reference temperature

Table 12: Namelist(s) bac in subroutine bac:bacteria:read — bac_read (module bac), to be placed in file pfn.

Parameter Default Description

species v species identifier for IO

DOM 'DOM' name of labile DOM compartment

fT '"Eppley’ temperature function

fTlam .FALSE. flag whether saturation of DOC uptake is temperature dependent
ggem 0.3 maximum gross growth efficiency of bacteria
QN 0.16 mol N (mol.C)_1 N:C ratio

QP 0.01 mol P (mol.C)_1 P:C ratio

Q10 1.89 Q1 of the temperature function

sticky 0 stickiness (susceptibility to aggregation)
Tref 27 °C reference temperature

Vmax 5 dt maximum DOC uptake rate

lambda 0.1 m3molC™* Ivlev constant for DOC uptake

ADIM 1 m3(@molC) a1 affinity for DIN and DIP

Table 13: Namelist(s) det in subroutine det:detritus:read — det_read (module det), to be placed in file pfn.

Parameter Default Description

species 'det' species identifier for IO

aggregates .FALSE. does this group represent aggregates?*

decay " name of compartment receiving decayed detritus constituents; if left empty, detritus
C, N, P are directly remineralised to DIC, DIN, DIP

T 'Eppley' temperature function for decay rates

kag -1d! aggregation kernel

omax 15 saturation ({)) above which aragonite precipitates

remiC 0d-! detritus C decay rate

formPIC 0d-! detritus PIC formation rate to DIC for () > omax

remiPIC 0d-! detritus PIC decay rate to DIC (remiPIC > 0 activates detritus-PIC)

remiN 0d-! detritus N decay rate

remiP 0d-! detritus P decay rate

remiChl 0d! detritus Chl decay rate (remiChl > 0 activates detritus-Chl)

sink 0md~! sinking velocity

sticky 0 stickiness (susceptibility to aggregation)

*can be .TRUE. in one group at most

Table 14: Namelist(s) cmo for phytoplankton and diazotrophs in subroutine cmo:read — cmo_read (module cmo),
to be placed in file pfn.

Parameter Symbol Default or Units Description

species . species identifier for IO

A0 Ay m3mol ' d~? potential nutrient affinity

alpha o 0 m2 W~ mol (g.chl)_1 d-! light affinity

DOM 'DOM' name of labile DOM compartment
FON e 0 molN (molC) 'd~! potential N, fixation rate

fF fe 0 degree of N, fixation

fPIC fric 0 calcification factor

fT 'Eppley' temperature function

fTalpha .FALSE. is alpha temperature dependent?
fTNF . temperature function for N, fixation
fTRC .TRUE. is R{}! temperature dependent?
pa '"dynamic' type of photo-acclimation

'"dynamic': fast Chl dynamics (2.13a)
'slow': slow Chl dynamics (2.13b))

' ': no Chl dynamics
QON g 0.04 molN (mol.C)_l N subsistence quota (minimum N:C ratio)
QoP g 0.001 mol P (mol.C)_1 P subsistence quota (minimum P:C ratio)
Q10 1.89 Q¢ of the temperature function
RC Rf,[hl 01 47t cost of Chl maintenance
rdl 1 daylength parameter
sticky 0 stickiness (susceptibility to aggregation)
Tmax 60 °C upper temperature limit for functionfT
Tref 27 °C reference temperature
VO Vo 5 d-! potential C, N, P acquisition rate
zC gent mol C (g.Chl)_1 cost of photosynthesis
zF - 2 mol C (mol.N) ™ cost of N, fixation
zN 7N 0.6 molC (mol.N)™* cost of biosynthesis

10

Table 15: Namelist(s) cfo for zooplankton in subroutine cfo:read — cfo_read (module cfo), to be placed in
parameter file pfn.

Parameter Symbol Default Description

species v species identifier for IO

beta B 0.2 digestion (assimilation) coefficient

ca Ca 0.1 cost of assimilation coefficient

cf or 0.1 cost of foraging coefficient

Emax E nax 0.99 maximum assimilation efficiency

fhRm oo 1 hibernation factor for maintenance respiration (diapause mor-
tality ~ 0.003d~!, Heath et al., 2000)

fhphi f}ﬁb 1 hibernation factor for feeding; set fhphi = 0 to make this group
stop feeding at hibernation depth (Hirche, |1996)

Cmax ¢ 1 m3(molC)™! potential prey capture coefficient

phi ¢ — vector of food preferences

Imax Lnax 1 d! maximum ingestion rate

Rm Ry 0 dt! rate of maintenance respiration

mort Miish 0 d! surface mortality (due to fish)

QN ON 0.16 molN (mol.C)™! N:C ratio

QP Qr 0.01 mol P (mol.C)_1 P:C ratio

px 1 ability to egest particles (faecal pellets)

motile .TRUE. flag indicating motile species

forage 'cfo' foraging function: 'cfo' or'switch'

egest 'det name of target-compartment for egestion

fT 'Eppley temperature function

DOM 'DOM' name of labile DOM compartment

Q10 1.89 Q19 of the temperature function

Tref 27 °C reference temperature

fde e 0 dissolved fraction of egestion

svm . seasonal vertical migration type: '' = 'static' or 'dynamic'

doya doy . — day of year of ascent for svm (only for svm # 'dynamic')

doyd doy . — day of year of descent for svm (only for svm # 'dynamic')

d0dvm fnight 0 m night-time (upper) depth of diel vertical migration

depdvm Aday 0 m day-time (lower) depth of diel vertical migration

dtdvm Atgym 0 d time window for DVM around sunrise and sunset

dOsvm Asummer 0 M upper depth of seasonal vertical migration

depsvm A inter 0 m lower depth of seasonal vertical migration

dtsvm Atgym 0 d temporal spread around doya, doyd

dtsvma Atgym 0 d temporal spread around doya

dtsvmd Atgym 0 d temporal spread around doyd

vdvm Udvm 0 md! velocity of diel vertical migration

vsvm Usym 0 md! seasonal vertical migration velocity (15-20m d~!, Heath,[1999)

11

3 Adding a Plankton Group

Adding a new plankton group involves three steps, (1) adding a namelist to the parameter file pfn, (2) adding
a dataset with the initial profile to the initial-conditions file ifn, and (3) adding the new group (species) to the

plankton community in namelist coco.

3.1 Add a new namelist to pfn

Decide which functional type the new group belongs to and select the corresponding namelist type:

Functional Type Namelist Type
bacteria bac
dissolved organic matter* dom
detritus det
phytoplankton, diazotrophs cmo
zooplankton cfo

*Note that you can have only 1 DOM group. The other types have a parameter species for identifying the group
in namelist coco and the initial-conditions and output files. Each group must have a unique species identifier.

3.2 Add a profile to the initial-conditions file ifn

Here is an example for adding another zooplankton group to a start file already containing an initial profile for a
zooplankton group named “zoo”, which belongs to type cfo. Since the cfo type allows only C tracers, the initial
profile for zoo is stored in a dataset named “zoo_C”. A new group named “mezoo” can be added in R like this:

library(oppla)
nc <- onc_info(filename = ifn, write = TRUE)
zooC <- RNetCDF::var.get.nc(ncfile = nc$self, variable = "zoo_C")
RNetCDF: :var.def.nc(ncfile = nc$self, varname
dimensions = ncvarzoo_C$dimensions)
RNetCDF: :att.put.nc(ncfile = nc$self, variable
value = ncvarzoo_C$units)
RNetCDF: :var.put.nc(ncfile
RNetCDF: :close.nc(nc$self)

"mezoo_C", name

nc$self, variable "mezoo_C", data

The species parameter in the new cfo namelist must be specified as species

3.3 Add the new group (species) to the plankton community

"mezoo_C", vartype

"NC_DOUBLE",
"units", type = "NC_CHAR",

zooC) # write zoo_C to mezoo_C

'mezoo’.

The group must be activated by listing its species name in the corresponding species vector in namelist coco. In

the above example, this means adding 'mezoo' to the vector cfo in namelist coco.

4 The R oppla package

The oppla R package is normally installed during the make process. The package can be loaded with 1ibrary (oppla)
or require (oppla). After upgrading R, you may have to delete the file R/ .oppla_installed before issuing make

again to install oppla and its dependencies.

4.1 Creating and modifying forcing files

The function oppla_forcing_foci() creates a forcing file from FOCI output. Surface and bottom data, e.g., sur-
face irradiance or wind speed, can be added by passing a list of surface data sets as the surface argument of
oppla_forcing_foci() or with the function oppla_forcing_add_ts(). For example, to add surface alkalinity
to an existing forcing file ("LS_FOCI.nc"), first prepare a data frame alkalinity with a column "time" of class

POSIXct and a column with the alkalinity data (class units). Then,

12

library(oppla)
oppla_forcing_add_ts(forcing file = "LS_FOCI.nc", new_data = alkalinity)

4.2 Reading and processing model output in R

Oppla provides the oppla R package with functions for reading, manipulating and writing namelist files and for
reading model output into R. Several R scripts in the R folder are samples for reading data and creating forcing
files which may serve as templates for other needs. The following instructions assume that the current working
directory is the folder where the simulation was done.

421 Reading model output

The oppla_read() function works reliably with the (default) option forcing = TRUE only when the oppla output
file is in the location where it was produced. Use forcing = FALSE if the output file was copied or moved. Oppla
does not write the concentrations of CO,, HCO;™, and CO32_ into the output file, but these can be added with the
function oppla_DIC(). This will only work with the default setting (forcing = TRUE) for oppla_read().

library(oppla)

ool <- oppla_read(file = "output_1.nc") #read state variables

002 <- oppla_read(file = "output_2.nc") #read state variables
ool_dic <- oppla_dic(oppla = ool) #add CO,, HCO;, CO32_ columns
the following two commands only work with command-line option -m

or if soma = T in namelist start

of <- oppla_flux(data = ool) #read physical (vertical) fluxes

os <- oppla_soma(data = ool) #read fluxes among state variables (soma)

4.2.2 Time slices and initial-condition files

tsl <- oppla_slice(oppla = ool, date = ool$date[150]) #extract time slice
#modify time slice

oppla_icf (oppla = tsl, filename = "ic_tsl.nc") # create initial-conditions file
create an initial-conditions file for a new depth structure from the first time slice in ool
nc <- onc_info(filename = "new_forcing.nc", close = TRUE)

depth_new <- units::set_units(ncdimdepth$vals, nc$dim$depth$units)
oppla_icf(oppla = ool, filename = "ic_new.nc", depth = depth_new)

oppla_slice() is a convenience function to facilitate manipulating initial conditions. Function oppla_icf () also
has an optional date argument, which allows creating initial-conditions files from oppla output. Finally, oppla can
restart directly from an output file via option -i (parameter ifn in namelist files, Table[2]) and parameter tin in
namelist timing (Table[d)).

4.2.3 Time averages and climatologies

oomon <- oppla_monthly(data = ool) # monthly averages
oomct <- oppla_monthly(data = ool, avc = "month") #monthly climatology
ooday <- oppla_daily(data = ool) # daily averages

4.2.4 Vertical integrals

ooi <- oppla_int(data = ool, depth = units::set_units(200, "m")) #vertical integrals to 200 m
ooimon <- oppla_int(data = ool, avc = c("month", "year")) # monthly averages to 100 m

Note that depth should be specified as a units object, otherwise oppla_int () assumes m.

13

4.2.5 Level and tile plots

oppla_level() and oppla_tile() can produce one or several level or tile plots on the same colour scale.

oppla_level uses levelplot() from package lattice:

oppla_level(column = phyt_C, data = ooday, ylim = c(200, 0))
oppla_level(column = DIN / DIP, data = list(ool, 002), ylim = c(200, 0))
oppla_tile uses ggplot() and geom_tile() from package ggplot2:
oppla_tile(column = DIN / DIP, data = list(ool, 002), ylim = c(200, 0))

Monthly climatologies of oppla results and observations. First create the climatologies, ensuring that both
model and data climatologies contain the column to be plotted. Note that the depth edges in the data climatology
need not match those in the model results. The following example assumes that the data in mydata.rds contains a
column named Chlorophyll and the model was configured with two phytoplankton groups, diaz and phyt.

data <- readRDS(file = "mydata.rds")

model <- oppla_read(file = "oppla_out.nc")

dmc <- op_aggregate(data = data, edges = (0:20) * 10, datecols = "month") #data climatology
mmc <- oppla_ave(data = model, avc = "month") #model climatology

mmc[j = Chlorophyll := diaz_Chl + phyt_Chl]l #add Chlorophyll column to model climatology
oppla_tile(column = Chlorophyll, data = list(data = dmc, model = mmc), ylim = c(200, 0))

4.2.6 Namelist files

Fortran namelists can be read into named lists of lists with nm1_read (), modified with nm1_set (), and written to
files with nm1_write (). Values of namelist variables can be extracted with nm1_get ().

library(oppla)
nml <- nml_read(file = "oppla_control.nml")
v <- list(AO = list("cmo", 1, "AO"), # parameter A0 from first namelist cmo

phi = list("cfo", 1, "phi", 1:3)) #first3 phi values from first namelist cfo
p < nml_get(aml = nml, vars = v)

p$AO <- units::as_units(150, units(p$A0))

pdphil[2] <- units::as_units(50, units(p$phil[2]))

nmll <- nml_set(nml = nml, vars = v, values = p)

nml_write(nml = nmll, file = "oppla_1_control.nml")

5 The Matlab oppla packages

The make process installs the Matlab packages oppla, nml, odb, and eos80 by adding the path to oppla/MATLAB to
your startup.m, creating it if it did not exist already.

5.1 Reading model output

ool = oppla.read('output_1.nc'); 7 state variables, input and forcing files, and soma tables and
oppla.read('output_2.nc'); 7 fluxarrays if present in the output files

002

5.2 Climatologies

col
co2

oppla.cmt(ool); /% climatologies for all state variables
oppla.cmt (o002, 'DIC', 'DIN'); /climatologies for DIC and DIN

14

5.3 Oppla database (odb) functions

The odb format is used to store data along with meta-data in a profile-oriented way. An odb database is a Matlab
structure with fields cruise (cell array of cruise names), station (cell array of station names), file (cell array of file
names of the original data), prf, rec, and one field for each type of data (Fig.[2]). The rec field links the data to each
other and to the profiles. It is a structure array with fields depth and prf, where depth is the depth of the record
and prf an index into the prf field of the main odb structure. Each data field has fields rec, val, units, where val
and units are the observed values and units and rec is an index into the prf and depth vectors inside the rec field of
the main odb structure. The prf field is another structure array with fields crs (index into the crs field of the main
odb structure), stn (index into station), file (index into file), date, lat, and lon. Thus, each data entry is linked to a
record, which associates the data with a depth and a profile, which in turn links the record to meta-data (cruise,
station, original file, date, latitude, longitude).

Fields of odb databases are stored as individual variables in mat-files, so should be assigned to a variable when
loaded.

lsd = load('LS_WOD.mat'); % load odb database
1s_chl = odb.get(1lsd, 'Chlorophyll'); Jextractall Chlorophyll data
odb.contour(lsd, 'Chlorophyll'); /% filled contour plot of all Chlorophyll data

{cruise} {statlon} {f11e} data n
/1 N\ VNN
T units | (val) units | (val)
crs stn f11e 7/ /
(rec) (rec)
o
prf prf) — rec
date lat lon (depth)

Figure 2: Oppla database (odb) structure. Field names in {} are cell arrays, names in [] are structure arrays, and
names in () are vectors. Bold type and thick arrows indicate indexing, e.g., the (rec) fields of the data fields are
index vectors into the (prf) and (depth) arrays of the rec structure. The (rec) and (val) data fields have the same
size, as do the (prf) and (depth) fields of rec. Matching elements of the (rec) vectors identify data from the same
records.

6 Parameter estimation with a genetic algorithm

The suite of tools in the GA folder can be used to apply a genetic algorithm (GA) for parameter estimation. The
actual GA is implemented in GA/gafort.£90, which is compiled into GA/gafort. The executable gafort reads
its parameters from namelist ga in the file gafort.in and calls the R-function getObs () from GA/costfun.R and
the bash script GA/costfun.sh, which prepare a climatology of observations, execute a set of oppla simulations,
and calculate the costs assessing the differences between the observed and simulated climatologies. The observed
climatology and the model simulations are based on two files which must be present in the same working directory
where you execute the gafort program: the oppla control file and the default parameter file. The names of these
two files are specified in namelist ga in the file gafort.in as oppla_file and default_param_file, respectively.
The default_param_file is used as a template for generating the individual parameter input files for oppla. It is
also used as the parameter set for the first individual in the first generation at the start of a GA application.

Note that the oppla_file must specify the file names for the initial conditions (ifn in namelist files) and the
physical forcing (dfn in namelist files) and contain an additional namelist costfun with the variables cut_date
and max_depth giving the cut-off date after which and the depth above which the simulation results are used for
calculating the model climatology.

15

The actual cost function is implemented in the R-function costfun() in GA/costfun.R. The script GA/costfun.R
is an example for the Labrador Sea, comparing the simulations with observations stored in R/LS_W0OD.rds. A new
costfun.R mustbe created for different areas and datasets, providing the two functions getObs(file, oppla_inp)
and costfun(pop_size, cost_file, error_file, model_file, oppla_inp, ...), adhering to the same argu-
ment lists. The script costfun.R and any files accessed by the functions in it must also be present in the working
directory from where you execute the gafort program.

The script GA/costfun. sh is the main interface between gafort and the cost function. It first calls make_inp ()
to generate a set of oppla parameter input files from parameter sets provided by gafort in oppla_gar_<ng>.nml,
where ng is the current generation number. Then GA/costfun.sh executes the simulations for these parameter
input files for the current generation. Finally, it calls costfun() to calculate costs for all individuals and write
them to a file (oppla_cost_GA<n>.csv) which is then read by gafort to generate the parameter sets for the next
generation.

6.1 Suggested procedure
1. Create and enter a new folder (GA in the following) for the parameter estimation.

2. Prepare a control file with the names of the initial-condition and physical-forcing files in namelist files and
with the namelist costfun with entries:

cut_date first date in the output file to be used for the cost function
max_depth model and data are used down to this depth for the cost function
param_match (optional) pairs of parameter names to be set to equal values; it should have the format

'<name 1>' '<name 1a>', '<name 2>' '<name 2a>', ...
where <name 1> is an element in param_name in namelist ga in gafort.in, e.g., the entry
param_match 'cfo-2-phi-3' 'cfo-3-phi-3'
causes make_inp() to set 'cfo-3-phi-3' to the same value as 'cfo-2-phi-3" in all parameter files.
3. Place the initial-condition and physical-forcing files in GA.
4. Prepare a default parameter file (default_param_file in step [f|below) and place it in GA.
5. Prepare (or copy the example) script costfun.R and any files used by it, e.g., files with observed data, to GA.
The script costfun.R must provide two functions:
e getObs(file, file_zoo, oppla_inp)
e costfun(pop_size, cost_file, error_file, model_file, oppla_inp, ...)
6. Prepare the gafort. in file based on <oppla>/GA/gafort.in (<oppla> is the oppla installation folder).

e entries oppla_file and default_param_file in namelist ga specify the control and default parameter
files, specified as <control> and <param>, respectively, in step [/|below

e param_name, parmin, and parmax specify the names and upper and lower limits of the parameters to be
optimised; the names of the parameters should have the format

'<namelist name>-<namelist index>-<variable name>[-<variable index>]'

e.g., the scalar variable alpha in the first or only cmo namelist is 'cmo-1-alpha' and the third element
in the array variable phi in the second cfo namelist is ' cfo-2-phi-3'

7. Do a trial simulation and test the getObs () and constfun() functions in R:

mkdir -p fitnessl
<oppla>/oppla <control> -p <param> -o fitnessl/test.nc #trial simulation
R #start R

obs <- getObs()
costfun(pop_size = 1, cost_file = "cost_test.csv", model_file = "test.nc",
oppla_inp = "<control>", obs = obs)

8. Execute the GA/gafort executable by specifying the full path to its location inside <oppla>.

16

References

Brock, T. D. (1981). Calculating solar radiation for ecological studies. Ecol. Model. 14(1-2): 1-19.

Follows, M. J., Ito, T. & Dutkiewicz, S. (2006). On the solution of the carbonate chemistry system in ocean biogeo-
chemistry models. Ocean Model. 12: 290-301. por: 10.1016/j . ocemod.2005.05. 004!

Forsythe, W. C., Rykiel, E.], Stahl, R. S., Wu, H.-i. & Schoolfield, R. M. (1995). A model comparison for daylength
as a function of latitude and day of year. Ecol. Model. 80(1): 87-95. por:/10.1016/0304-3800(94) 00034-f£|

Heath, M. R, Astthorsson, O. S., Dunn, J., Ellertsen, B., Gaard, E., Gislason, A., Gurney, W. S. C., Hind, A. T,
Irigoien, X., Melle, W., Niehoff, B., Olsen, K., Skreslet, S. & Tande, K. S. (2000). Comparative analysis of Calanus
finmarchicus demography at locations around the Northeast Atlantic. ICES J. mar. Sci. 57: 1562-1580. 1ssn: 1054-
3139. por:|10. 1006/ jmsc.2000.0950.

Heath, M. (1999). The ascent migration of Calanus finmarchicus from overwintering depths in the Faroe-Shetland
Channel. Fisheries Oceanography 8(Suppl. 1): 84-99. por: 10.1046/j.1365-2419.1999.00013.x.

Hirche, H. J. (1996). Diapause in the marine copepod, Calanus finmarchicus — A review. Ophelia 44: 129-143. 1ssN:
0078-5326. por:110.1080/00785326.1995. 10429843,

Liss, P. S. & Merlivat, L. (1986). Air-sea gas exchange rates. Introduction and synthesis. In: The Role of Air-Sea Ex-
change in Geochemical Cycling. Ed. by P. Buat-Ménard. Vol. 185. NATO ASI Series C: Mathematical and Physical
Sciences. Reidel, Dordrecht, pp. 113-129.

Munhoven, G. (2013). Mathematics of the total alkalinity-pH equation — pathway to robust and universal solution
algorithms: the SolveSAPHE package v1.0.1. Geosci. Model Dev. 6: 1367-1388. 1ssn: 1991-959X. por:|10.5194/gmd -
B=1367=2013.

Wanninkhof, R. (1992). Relationship Between Wind Speed and Gas Exchange Over the Ocean. |. Geophys. Res.
97(C5): 7373-7382. por:|10. 1029/92JC00188.

Wanninkhof, R. & McGillis, W. R. (1999). A cubic relationship between air-sea CO, exchange and wind speed.
Geophys. Res. Lett. 26(13): 1889-1892.

17

https://doi.org/10.1016/j.ocemod.2005.05.004
https://doi.org/10.1016/0304-3800(94)00034-f
https://doi.org/10.1006/jmsc.2000.0950
https://doi.org/10.1046/j.1365-2419.1999.00013.x
https://doi.org/10.1080/00785326.1995.10429843
https://doi.org/10.5194/gmd-6-1367-2013
https://doi.org/10.5194/gmd-6-1367-2013
https://doi.org/10.1029/92JC00188

	Obtaining and Installing OPPLA
	Running OPPLA
	Prerequisites
	The initial-conditions file
	The forcing file

	Command-line options
	Namelists

	Adding a Plankton Group
	Add a new namelist to pfn
	Add a profile to the initial-conditions file ifn
	Add the new group (species) to the plankton community

	The R oppla package
	Creating and modifying forcing files
	Reading and processing model output in R
	Reading model output
	Time slices and initial-condition files
	Time averages and climatologies
	Vertical integrals
	Level and tile plots
	Namelist files

	The Matlab oppla packages
	Reading model output
	Climatologies
	Oppla database (odb) functions

	Parameter estimation with a genetic algorithm
	Suggested procedure

