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1 Functional types and state variables

The OPtimality-based PLAnkton ecosystem model (OPPLA) allows for up to 6 functional types, dis-
solved inorganic and organic matter, bacteria, phytoplankton, zooplankton, and detritus. Any number of
bacterial, phytoplankton, and zooplankton groups can be specified for the ecosystem. Dissolved organic
matter (DOM) comprises labile and refractory DOC and DON and labile DOP. Variable stoichiometry
is implemented for phytoplankton and detritus. The rates of change of dissolved inorganic C, N, and P
(𝐶i = DIC, 𝑁i = DIN, 𝑃i = DIP), phytoplankton C, N, P, Chl (Cphy, Nphy, Pphy, Chl), and zooplankton
compartments (Czoo) are

d𝑌i
d𝑡

= −𝑉𝑌
phy + 𝑋𝑌

zoo 𝑌 ∈ {C, N, P} (1)

d𝑌phy

d𝑡
= 𝑉𝑌

phy − 𝐼𝑌phy ⋅ 𝑄𝑌
phy 𝑌 ∈ {C, N, P} (2)

dChl
d𝑡

=
dCphy

d𝑡
⋅ 𝜃 +

d𝜃
d𝑡

⋅ Cphy (3)

dCzoo
d𝑡

= 𝑉C
zoo − 𝐼Czoo (4)
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where the superscripts denote the element (C, N, or P), 𝑉 is assimilation into the state indicated by
the subscript, 𝐼 total ingestion by zooplankton of the compartment in the subscript, 𝑋 is excretion, 𝑅
respiration, 𝑄 the cell quota (N:C or P:C ratio, 𝑄C = 1), and 𝜃 the Chl:Cphy ratio.

The individual fluxes in the right-hand sides of (1)–(4) have been derived with the help of the op-
timality principle, assuming that phytoplankton and zooplankton allocate their intracellular resources
among the competing requirements for resource acquisition and growth so as to maximise net relative
growth rate (Pahlow, Dietze, and Oschlies, 2013; Pahlow and Prowe, 2010).

2 Chain-model for phytoplankton growth and diazotrophy

2.1 Trade-off between C and N assimilation

The trade-off between chlorophyll maintenance and nutrient acquisition introduced by Pahlow (2005)
and Pahlow and Oschlies (2009) is replaced by a trade-off between chlorophyll maintenance and growth
in Pahlow andOschlies (2013) and Pahlow, Dietze, andOschlies (2013). As didWirtz and Pahlow (2010),
the redesigned chain model makes use of allocation factors describing the fraction of cellular N allocated
for specific tasks. The cost of chlorophyll maintenance (𝑅Chl) is defined as

𝑅Chl = (𝐿d𝑉C
0 𝑆I + 𝑅Chl

M )𝜁Chl𝜃 = 𝑓C(𝐿d𝑉C
0 𝑆I + 𝑅Chl

M )𝜁Chl �𝜃, 𝑓C = �1 −
𝑄N

s
𝑄N − 𝑓V� (2.1)

where 𝑓V is the allocation factor for nutrient acquisition (uptake and assimilation),𝑅Chl
M the light-independent

part of chlorophyll maintenance costs, 𝑄N
s the (non-allocatable) part of the N quota required for struc-

tural protein, 𝜁Chl the amount of fixed C respired per unit chlorophyll synthesised, and 𝐿d day length as
a fraction of 24 h. Nitrogen assimilation and temporally averaged net growth rate are

𝑉N = 𝑓V�𝑉N 𝑉N
phy = Cphy ⋅ 𝑉N (2.2)

𝜇 = 𝑉C − 𝑅,

⇒ 𝜇 = 𝑓C𝒜 − 𝑓V𝜁N�𝑉N − 𝑅M,

𝑉C = 𝑉C
0 𝑓C𝑆I, 𝑅 = 𝑅Chl + 𝜁N𝑉N

phy + 𝑅M,

𝑉C
phy = Cphy ⋅ 𝜇, 𝑉C

0 =
𝑉0

(0.5 + 𝐿d)
𝑟d

(2.3)

where

𝑆I = 1 − exp
⎛
⎜⎜⎜⎝−
𝛼 �𝜃𝐼
𝑉C
0

⎞
⎟⎟⎟⎠ , 𝒜 = 𝑉C

0 𝑆I(1 − 𝜁Chl �𝜃) − 𝑅Chl
M 𝜁Chl �𝜃, �𝜃 =

𝜃
𝑓C

, (2.4)

and 𝜃 is the Chl:C ratio. 24-h averages can be written as

𝜇 = 𝑓C𝒜− 𝑓V𝜁N�𝑉N − 𝑅M and 𝒜 = 𝐿d ⋅ 𝒜 (2.5)

Maximising 𝜇 with respect to 𝜃 for balanced growth gives

d𝜇
d𝜃

!= 0 ⇔
d𝒜
d �𝜃

= 𝐿d𝑉C
0 �

𝛼𝐼
𝑉C
0
(1 − 𝑆I)(1 − 𝜁Chl �𝜃) − 𝑆I𝜁Chl� − 𝑅Chl

M 𝜁Chl = 0 (2.6)

⇔ 0 = 𝐿d𝑉C
0

⎧⎪⎨
⎪⎩
𝛼𝐼
𝑉C
0
exp

⎛
⎜⎜⎜⎝−
𝛼 �𝜃𝐼
𝑉C
0

⎞
⎟⎟⎟⎠ (1 − 𝜁Chl �𝜃) −

⎡
⎢⎢⎢⎣1 − exp

⎛
⎜⎜⎜⎝−
𝛼 �𝜃𝐼
𝑉C
0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ 𝜁Chl

⎫⎪⎬
⎪⎭ − 𝑅

Chl
M 𝜁Chl (2.7)

⇔
⎛
⎜⎜⎜⎝

𝛼𝐼
𝑉C
0 𝜁Chl

−
𝛼𝐼 �𝜃
𝑉C
0
+ 1
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝−
𝛼 �𝜃𝐼
𝑉C
0

⎞
⎟⎟⎟⎠ − 1 =

𝑅Chl
M

𝐿d𝑉C
0

(2.8)

⇔
⎛
⎜⎜⎜⎝

𝛼𝐼
𝑉C
0 𝜁Chl

−
𝛼𝐼 �𝜃
𝑉C
0
+ 1
⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝

𝛼𝐼
𝑉C
0 𝜁Chl

+ 1 −
𝛼 �𝜃𝐼
𝑉C
0

⎞
⎟⎟⎟⎠ = �1 +

𝑅Chl
M

𝐿d𝑉C
0
� exp �

𝛼𝐼
𝑉C
0 𝜁Chl

+ 1� (2.9)
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⇔
⎛
⎜⎜⎜⎝

𝛼𝐼
𝑉C
0 𝜁Chl

−
𝛼𝐼 �𝜃
𝑉C
0
+ 1
⎞
⎟⎟⎟⎠ =W0 ��1 +

𝑅Chl
M

𝐿d𝑉C
0
� exp �1 +

𝛼𝐼
𝑉C
0 𝜁Chl

�� (2.10)

⇔ �𝜃 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
𝜁Chl

+
𝑉C
0
𝛼𝐼 �

1 −W0 ��1 +
𝑅Chl
M

𝐿d𝑉C
0
� exp �1 +

𝛼𝐼
𝑉C
0 𝜁Chl

��� if 𝐼 > 𝐼0

0 if 𝐼 ≤ 𝐼0
(2.11)

where W0 is the 0-branch of the Lambert-W function, and the threshold irradiance 𝐼0 required to cover
the light-independent cost of chlorophyll maintenance is given by

𝐼0 =
𝜁Chl𝑅Chl

M
𝐿d𝛼

. (2.12)

Chlorophyll dynamics drives the photo-acclimation process. Chlorophyll synthesis is assumed propor-
tional to the current size of the chloroplast (𝑓C) and must satisfy Eq. (2.11) at steady-state, which is
accomplished by

̇Chl
Chl

= 𝜇 +
𝜃̇
𝜃
= 𝜇 +

𝑓C
𝜁Chl

d𝜇
d𝜃

+ 𝑓C ⋅
̃𝑄̇N

𝜃
d𝜃
d𝑄N (2.13a)

̇Chl
Chl

= 𝜇 +
𝜃̇
𝜃
= 𝜇 +

𝑓C
𝜁Chl

d𝜇
d𝜃

(2.13b)

where the dots indicate time derivatives and 𝜇 is limited to positive values in the calculation of ̃𝑄̇N

(Eq. 2.15) to prevent a positive feedbackwithChl synthesis due to respiration caused byhigh𝜃. Eq. (2.13b)
represents slower Chl synthesis during periods of high rates of N acquisition. The photo-regulatory term,
1/𝜁Chl ⋅ d𝜇�d𝜃 , is meant to represent adaptive dynamics and can be written as

1
𝜁Chl

d𝜇
d𝜃

=
1
𝜁Chl

d𝜇

d �𝜃
d �𝜃
d𝜃

=
1
𝜁Chl

d𝒜
d �𝜃

= 𝐿d �𝛼𝐼(1 − 𝑆I) �
1
𝜁Chl

− �𝜃� − 𝑆I𝑉C
0 � − 𝑅Chl

M (2.14)

and the relative change in 𝜃 due to changing 𝑄N is

𝑓C ⋅
̃𝑄̇N

𝜃
d𝜃
d𝑄N = 𝑓C ⋅ ̃𝑄̇N

�𝜃
𝜃

⎛
⎜⎜⎜⎝2
𝑄N

s

𝑄N2 + 𝜁
N
⎞
⎟⎟⎟⎠ = ̃𝑄̇N

⎛
⎜⎜⎜⎝2
𝑄N

s

𝑄N2 + 𝜁
N
⎞
⎟⎟⎟⎠ , ̃𝑄̇N = 𝑉N

phy −max(𝜇, 0) ⋅ 𝑄 (2.15)

which accounts for the destruction and/or build-up of the chloroplast. Eq. (2.13a) is much faster than the
Chl dynamics proposed in Pahlow (2005), which were developed to reproduce the rather long lag-phase
reported for Isochrysis galbana by Flynn, Davidson, and Leftley (1994). However, recent simulations of
mesocosm experiments have shown that a long lag-phase may not be typical for most plankton systems.

𝑄N can be eliminated from (2.3) with the help of the balanced-growth approximation:

𝑄N =
𝑉N
phy

𝜇 + 𝑅M
=

𝑓V�𝑉N

𝒜�1 −
𝑄N

s
𝑄N − 𝑓V� − 𝜁N𝑓V�𝑉N

(2.16)

⇔ 𝑄N =
𝒜𝑄N

s + 𝑓V�𝑉N

𝒜(1 − 𝑓V) − 𝑓V𝜁N�𝑉N
(2.17)

⇔ 𝜇 = 𝒜�1 − 𝑓V − 𝑄N
s
𝒜(1 − 𝑓V) − 𝑓V𝜁N�𝑉N

𝒜𝑄N
s + 𝑓V�𝑉N � − 𝑓V𝜁N�𝑉N − 𝑅M (2.18)
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Figure 1: Orthogonal hierarchy of N allocation in the chain model.

= �𝒜
1 − 𝑓V + 𝜁N𝑄N

s

𝒜𝑄N
s + 𝑓v�𝑉N

− 𝜁N�𝑓V�𝑉N − 𝑅M (2.19)

The optimal allocation of cellularN towards nutrient acquisition (𝑓oV) can be found by forming the deriva-
tive of 𝜇 with respect to 𝑓V from (2.18):

d𝜇
d𝑓V

!= 0 ⇔ 𝑓oV
2 + 2𝑓oV

𝒜𝑄N
s

�𝑉N
−

𝒜
2
𝑄N

s
�𝑉N(𝒜 + 𝜁N�𝑉N)

= 0 (2.20)

⇔ 𝑓oV =
𝒜𝑄N

s
�𝑉N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
− 1 +

�
⃓
⃓
⃓
⎷

1 +
1

𝑄N
s

⎛
⎜⎜⎜⎝
𝒜
�𝑉N

+ 𝜁N
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

2.2 Equivalence with Droop’s cell-quota model

The problem with (2.21) is that it is an immediate function of current ambient light and nutrient avail-
ability, so that the regulation would likely end up trying to catch up with quickly-changing conditions.
Given the balanced-growth assumption in the derivation of (2.21) this does not appear feasible. Thus, a
regulation based solely on the internal physiological state defined by the composition of the cell is sought,
implicitly responding to the average growth conditions during the last one or two generational cycles. In
order to eliminate the nutrient- and light-dependent terms �𝑉N and 𝒜, (2.17) is rearranged to find an
expression for𝒜��𝑉N, which is substituted in (2.20), whence (2.20) can be factorised as

�𝑓oV − (1 + 𝜁N𝑄N
s )��𝑓oV −

𝑄N
s

𝑄N + 𝜁N(𝑄N − 2𝑄N
s )� = 0 (2.22)
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Table 1: Units and descriptions of symbols for phytoplankton

Symbol Units Description
𝛼 m2 dE−1molCgChl−1 Chl-specific light absorption coefficient
𝐴0 m3molC−1 d−1 potential nutrient affinity
𝜁Chl molCgChl−1 cost of Chl synthesis
𝜁N molCmolN−1 cost of N assimilation
𝐹N0 molCmolC−1 d−1 potential rate of N2 fixation
𝑓C — N quota fraction allocated for CO2 fixation
𝑓F — fraction of 𝑓N𝑓V𝑄N allocated for N2 fixation
𝑓N — fraction of 𝑓V𝑄N allocated for N uptake
𝑓V — N quota fraction allocated for nutrient acquisition
𝐿d — day length as a fraction of 24 h
𝜇 d−1 net growth rate averaged over 24 h

𝑁 molNm−3 DIN concentration
𝑃 molNm−3 DIP concentration
𝑄N molNmolC−1 N:C ratio (N quota)
𝑄N

s molNmolC−1 partial N quota associated with structural protein
𝑄P molPmolC−1 P:C ratio (P quota)
𝑄P

0 molPmolC−1 subsistence P:C ratio (P quota)
𝑅 d−1 respiration
𝑅Chl d−1 respiration cost of Chl maintenance
𝑅M d−1 maintenance loss (same for C, N, P, Chl)

𝑅Chl
M d−1 Chl maintenance respiration
𝑟DOC molCmolC−1 d−1 DOC release
𝑟d — daylength parameter
𝑆I — degree of light saturation
𝜃 gChlmolC−1 Chl:C ratio
�𝜃 gChlmolC−1 chloroplast Chl:C ratio
𝑉0 molmolC−1 d−1 potential rate
𝑉C molCmolC−1 d−1 gross C fixation rate
𝑉C
0 molCmolC−1 d−1 potential C fixation rate

𝑉N
phy molNmolC−1 d−1 N uptake rate

𝑉N
0 molNmolC−1 d−1 potential N uptake rate

𝑉P molPmolC−1 d−1 P uptake rate
𝑉P
0 molPmolC−1 d−1 potential P uptake rate

With the obvious condition 0 < 𝑓oV < 1, the second term has to be zero, i.e.,

𝑓oV =
𝑄N

s
𝑄N − 𝜁N(𝑄N − 2𝑄N

s ) (2.23)
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�𝑉N is eliminated from (2.3) with the help of

𝑉N
phy = 𝑓V�𝑉N = �𝜇 + 𝑅M�𝑄N (2.24)

and 𝑓oV from (2.23) is substituted for 𝑓V, whereupon (2.3) becomes equivalent to Droop’s (1974) cell-
quota formula for balanced growth,

𝜇 + 𝑅M = 𝒜�1 − 2
𝑄N

s
𝑄N �. (2.25)

where the subsistence quota is 2𝑄N
s .

Eq. (2.23) shows that the optimal balance between light harvesting and nutrient acquisition for bal-
anced growth can be determined independently of external factors, i.e., nutrient concentrations and light
intensity, which is not apparent in (2.21). The corollary is that an optimal regulation is possible which is
robust to short-term variations in light and nutrient availability, since the nitrogen cell quota 𝑄N reflects
a temporal average of growth conditions over a time scale of the order of one to several days. (2.23) is
also very convenient for calculating the maximal 𝑄N, as defined by 𝑓oV = 0:

𝑄N
max = lim

�𝑉N→∞
𝑄N = 𝑄N

0 �1 +�
1 +

1
𝜁N𝑄N

0
�, (2.26)

which is identical to the expression found by Pahlow (2005).
The relationship between 𝜇 and 𝑓oV is found by solving (2.23) for 𝑄N and substituting in (2.25):

𝜇 + 𝑅M = 𝒜
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
2

1 −
𝑓oV

2𝜁N𝑄N
s
+
�
�1 −

𝑓oV
2𝜁N𝑄N

s
�
2

+
1

𝜁N𝑄N
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.27)

2.3 Nitrogen and phosphorus uptake

Both N and P uptake occur in the same compartment, which is allocated fraction 𝑓oV of available N re-
sources. Resources are allocated between N and P uptake within the nutrient-assimilation compartment
so thatN assimilation ismaximised. Since it follows from (2.25) that𝜇 is uniquely related to𝑄N, maximis-
ing �𝑉N within the nutrient-assimilation compartment will maximise 𝜇 for the whole cell. N assimilation
is determined by P availability in the cell:

𝑉N
phy = 𝑓oV�𝑉N = 𝑓oV𝑓N�𝑉N

∗ 𝑉P = 𝑓oV�𝑉P = 𝑓oV(1 − 𝑓N)�𝑉P
∗ (2.28)

�𝑉N
∗ = �

�
1

𝑉N
max

+
�

1
𝐴0𝑁

�
−2

�𝑉P
∗ = ��

1
𝑉P
0
+
�

1
𝐴0𝑃

�
−2

(2.29)

𝑉N
max = 𝑉N

0 �1 −
𝑄P

0
𝑄P � , (2.30)

where 𝑁 and 𝑃 are DIN and DIP concentration and 𝑓N is the allocation of resources for N uptake within
the nutrient-assimilation compartment. In order to find the optimal allocation (𝑓oN), 𝑄P in (2.30) is re-
placed by the balanced-growth approximation

𝑄P = 𝑄N 𝑉P

𝑉N
phy

= 𝑄N �
1
𝑓N

− 1�
�𝑉P
∗

�𝑉N
∗
. (2.31)
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The system (2.28)–(2.31) can unfortunately not be transformed into an explicit steady-state equation for
𝑉N
phy. Numerical solution of (2.29)–(2.31) given 𝑄N and 𝑓N is straight forward, however, whence 𝑓oN is

found numerically as well. A closed-form expression for 𝑓oN was obtained accidentally, starting with an
attempt to find an approximation to 𝑓oN by solving

d�𝑉N

d𝑓N
=
𝜕�𝑉N

𝜕𝑓N
+
𝜕�𝑉N

𝜕𝑄P
d𝑄P

d𝑓N
!= 0, (2.32)

d𝑄P

d𝑓N
=
𝜕𝑄P

𝜕𝑓N
+
𝜕𝑄P

𝜕�𝑉N
∗

d�𝑉N
∗

d𝑄P
d𝑄P

d𝑓N
⇔

d𝑄P

d𝑓N
=

𝜕𝑄P

𝜕𝑓N

1 −
𝜕𝑄P

𝜕�𝑉N
∗

d�𝑉N
∗

d𝑄P

. (2.33)

(2.33) is implicit because d�𝑉N
∗ �d𝑄P contains a circular dependence on d𝑄P�d𝑓N , but it proved fruitful

to examine the approximation
d𝑄P

d�𝑉N
∗
≈
𝜕𝑄P

𝜕�𝑉N
∗
, (2.34)

and making use of

𝜕�𝑉N

𝜕𝑓N
= �𝑉N

∗ ,
𝜕�𝑉N

𝜕𝑄P = ℬ𝑓N
�𝑉N
∗
𝑄P ,

𝜕𝑄P

𝜕𝑓N
= −

𝑄N�𝑉P
∗

𝑓2N�𝑉N
∗
, (2.35)

where

ℬ =
1

�
𝑄P

𝑄P
0
− 1�

�

𝑉N
0
�𝑉N
∗
�1 −

𝑄P
0

𝑄P �

=
1

�
𝑄P

𝑄P
0
− 1�

�

𝑉N
max
�𝑉N
∗

. (2.36)

Substituting (2.34)–(2.35) into (2.32) and solving for 𝑓N does not yield an approximation to 𝑓oN, but,
luckily, instead evaluates to a constant:

𝑓N =
𝑄N�𝑉P

∗

𝑄P�𝑉N
∗
ℬ != 1. (2.37)

Thus, (2.37) can be solved for 𝑓oN, which indeed provides an exact solution of (2.32). (2.37) is multiplied
with 𝑄P�𝑉N

∗
2
, giving, with the help of (2.31),

⇔ ℬ = �
1
𝑓N

− 1�
2𝑄N

𝑄P

�𝑉P
∗

�𝑉N
∗

(2.38)

⇔ 𝑓oN =
1

1 +
�
ℬ
�𝑉N
∗
�𝑉P
∗

𝑄P

𝑄N

=
1

1 +

�
⃓
⃓
⎷

𝑄P
0

𝑄N
𝑉N
0
�𝑉P
∗

⎛
⎜⎜⎜⎝
�𝑉N
∗

𝑉N
max

⎞
⎟⎟⎟⎠
1.5

=
1 −

𝑄P
0

𝑄P

1 −
𝑄P

0
𝑄P

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

�𝑉N
∗

𝑉N
max

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.39)

(2.39) is an implicit equation for balanced growth, since it involves𝑄P, but can be applied directly in for-
ward simulations, where𝑄P is known. The last simplification is obtained by substituting𝑄N from (2.37).
If the system is not in steady state, (2.39) yields an approximation for 𝑓oN which converges towards the
steady-state solution.
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2.4 Transient down-regulation of C fixation

Because 𝑄P has no direct effect on 𝜇, the chain model faces the problem of outgrowing the P subsis-
tence quota 𝑄P

0 during intensifying P limitation (𝑄̇P < 0). Hence, the down-regulation must respond
specifically to declining 𝑄P. A relatively simple way to achieve the down-regulation is via the release of
dissolved organic carbon (DOC) during the transition to P limitation. To this end, 𝑟DOC is defined as a
part of net C fixation being released as DOC:

𝜇 = 𝑉C − 𝑅 − 𝑟DOC, 𝑟DOC = max�(𝑉C − 𝑅)
𝑄P

0
𝑄P −

𝑉P

𝑄P
0
, 0� ⋅max �2 −

𝑄P

𝑄P
0
, 0� , (2.40)

where 𝜇 is instantaneous growth rate. Since 𝑉C − 𝑅 < 𝑉P�𝑄P
0 for balanced growth, this should not

affect the steady-state equations presented above. The factor 𝑄P
0 �𝑄P reduces DOC production. Other

possibilities for the reduction term includemax �2 − 𝑄P�𝑄P
0 , 0�, restrictingDOC release to𝑄P

0 ≤ 𝑄P < 2𝑄P
0 ,

or exp �1 − 𝑄P�𝑄P
0�.

2.5 Calcification

Calcification is implemented as the product of a calcification factor (𝑓PIC) and CO2 fixation:

𝑉PIC = 𝑓PIC ⋅ 𝑉C (2.41)

2.6 Nitrogen fixation

Nitrogen fixation is incorporated into the redesigned chain model as a new compartment dedicated to
N2 fixation, which is separate from photosynthetic and nutrient uptake machineries. It is mathematically
convenient to define the N2 fixation compartment as a fraction of the nitrogen assimilation machinery,
i.e., a fraction of 𝑓V ⋅ 𝑓N. Total nitrogen assimilation rate is then:

𝑉N
T = 𝑉N

phy + 𝐹N = 𝑓V�𝑉N
T = 𝑓V𝑓N��1 − 𝑓F� �𝑉N

∗ + 𝑓F�𝐹N∗ �, (2.42)

where 𝐹N and �𝐹N∗ are defined as N2 fixation relative to the whole cell and the N2 fixation compartment,
respectively,

�𝐹N∗ = �1 −
𝑄P

0
𝑄P �𝐹

N
0 , (2.43)

and 𝐹N0 is the potentialN2 fixation rate of theN2 fixation apparatus. The energy requirement ofN2 fixation
incurs respiration costs 𝜁F𝐹N:

𝜇 = 𝒜�1 −
𝑄N

s
𝑄N − 𝑓V� − 𝑓V𝜁N�𝑉N

T − 𝑅M, 𝜁N =
𝜁N(1 − 𝑓F)�𝑉N

∗ + 𝜁F𝑓F�𝐹N∗
(1 − 𝑓F)�𝑉N

∗ + 𝑓F�𝐹N∗
, (2.44)

where 𝜁F is the cost of N2 fixation and 𝜁N the effective cost of N acquisition. Modifying Eqs. (2.17)
and (2.21) to include N2 fixation gives

𝑄N =
𝒜𝑄N

s + 𝑓V�𝑉N
T

𝒜(1 − 𝑓V) − 𝑓V𝜁N�𝑉N
T

=
𝒜𝑄N

s + 𝑓V�𝑉N
T

𝒜− 𝑓V(𝒜 + 𝜁N�𝑉N
T )

(2.45)

𝑓oV =
𝒜𝑄N

s
�𝑉N
T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 +
�
⃓⃓
⃓⃓

⎷

1 +
1

𝑄N
s

⎛
⎜⎜⎜⎜⎝
𝒜
�𝑉N
T
+ 𝜁N

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.46)
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𝜁N in (2.44) depends on 𝑓N only through its effect on 𝑄P, which is ignored here for simplicity. The
inaccuracy introduced thereby is of no consequence, as it will become clear below that (the exact form
of) (2.54) is not needed. Thus, 𝑓oN is foundbymaximising �𝑉N

T with respect to 𝑓N, analogous tomaximising
�𝑉N via (2.32)–(2.39):

d�𝑉N
T

d𝑓N
=
𝜕�𝑉N

T
𝜕𝑓N

+ �
𝜕�𝑉N

T

𝜕�𝑉N
∗

𝜕�𝑉N
∗

𝜕𝑄P +
𝜕�𝑉N

T

𝜕�𝐹N∗

𝜕�𝐹N∗
𝜕𝑄P �

d𝑄P

d𝑓N
!= 0, (2.47)

d𝑄P

d𝑓N
=
𝜕𝑄P

𝜕𝑓N
+
𝜕𝑄P

𝜕�𝑉N
T

d�𝑉N
T

d𝑄P
d𝑄P

d𝑓N
⇔

d𝑄P

d𝑓N
=

𝜕𝑄P

𝜕𝑓N

1 −
𝜕𝑄P

𝜕�𝑉N
T

d�𝑉N
T

d𝑄P

. (2.48)

Now the same trick as above is applied to find an expression evaluating to one:

d𝑄P

d𝑓N
≈
𝜕𝑄P

𝜕𝑓N
(2.49)

𝜕�𝑉N
T

𝜕𝑓N
=
�𝑉N
T
𝑓N

,
𝜕�𝑉N

T

𝜕�𝑉N
∗
= 𝑓N(1 − 𝑓F),

𝜕�𝑉N
T

𝜕�𝐹N∗
= 𝑓N𝑓F (2.50)

𝜕�𝐹N∗
𝜕𝑄P = 𝐹

N
0
𝑄P

0

𝑄P2
,

𝜕𝑄P

𝜕𝑓N
= −

𝑄N�𝑉P
∗

𝑓2N�(1 − 𝑓F)�𝑉N
∗ + 𝑓F�𝐹N∗ �

(2.51)

Solving (2.47) for 𝑓N then yields, withℬ as defined in (2.36),

𝑓N =
𝑄N

𝑄P
�𝑉P
∗

(1 − 𝑓F)ℬ + 𝑓F𝐹N0
𝑄P

0
𝑄P

�(1 − 𝑓F)�𝑉N
∗ + 𝑓F�𝐹N∗ �

2
!= 1 (2.52)

which is expanded analogously to (2.37):

⇔ (1 − 𝑓F)ℬ + 𝑓F𝐹N0
𝑄P

0
𝑄P = �

1
𝑓N

− 1�
2𝑄N

𝑄P
�𝑉P
∗ , (2.53)

⇔ 𝑓oN =
1

1 +
�

(1 − 𝑓F)𝑄Pℬ + 𝑓F𝑄P
0𝐹N0

𝑄N�𝑉P
∗

=
1

1 +
�
𝑄P

0
(1 − 𝑓F)𝑉N

0 (�𝑉N
∗ �𝑉N

max)
1.5
+ 𝑓F𝐹N0

𝑄N�𝑉P
∗

, (2.54)

which is identical to (2.39) for 𝑓F = 0.

2.7 Pure N2 fixation

It follows immediately from (2.44) and (2.46) that for pure N2 fixation, i.e., 𝑁 = 0 or 𝑓F = 1, the only
further modification necessary is a reformulation of 𝑓oN:

𝑄P = 𝑄N (1 − 𝑓N)�𝑉
P
∗

�𝑉N
T

=
𝑄N(1 − 𝑓N)�𝑉P

∗

𝑓N𝑓F�1 −
𝑄P

0
𝑄P �𝐹

N
0

⇔ 𝑄P = 𝑄P
0 + 𝑄N�

1
𝑓N

− 1�
�𝑉P
∗

𝑓F𝐹N0
(2.55)

�𝑉N
T = 𝑓N𝑓F

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
𝑄P

0

𝑄P
0 +

𝑄N(1 − 𝑓N)�𝑉P
∗

𝑓N𝑓F𝐹N0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐹N0 =
1

𝑄P
0

(1 − 𝑓N)𝑄N�𝑉P
∗
+

1
𝑓N𝑓F𝐹N0

(2.56)
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d�𝑉N
T

d𝑓N
!= 0 ⇔ 𝑓oN =

1

1 +
�
𝑓F
𝑄P

0𝐹N0
𝑄N�𝑉P

∗

= 1 −
𝑄P

0
𝑄P , (2.57)

where the last simplification was achieved by substituting 𝑄N from (2.52). The shape of (2.57) is the
same as that of (2.54) for𝑁 = 0. Substituting (2.57) back into (2.56) allows solving (2.55)–(2.57) directly
for P limited continuous cultures:

�𝑉N
T =

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝑄P
0

𝑄N�𝑉P
∗
+
�

1
𝑓F𝐹N0

⎞
⎟⎟⎟⎟⎟⎟⎠

−2

(2.58)

⇔ �𝑉P
∗ =

𝑄P
0

𝑄N ��
1
�𝑉N
T
−
�

1
𝑓F𝐹N0

�
−2

, 𝑄N =
2𝑄N

s

1 −
𝜇 + 𝑅M

𝒜

(2.59)

⇔ 𝑃 =
1
𝐴0

⎡
⎢⎢⎢⎢⎣�

𝑄N

𝑄P
0

⎛
⎜⎜⎜⎜⎝�

1
�𝑉N
T
−
�

1
𝑓F𝐹N0

⎞
⎟⎟⎟⎟⎠ −�

1
𝑉P
0

⎤
⎥⎥⎥⎥⎦

−2

, �𝑉N
T =

�𝜇 + 𝑅M�𝑄N

𝑓oV
. (2.60)

Substituting (2.57) into (2.55) yields a relatively simple expression for 𝑄P:

𝑄P = 𝑄P
0 +

�
𝑄N𝑄P

0
�𝑉P
∗

𝑓F𝐹N0
(2.61)

Fig. 2 compares model predictions with observations for pure N2 fixation, i.e., without DIN in the
supply, for Trichodesmium erythraeum. Since both datasets shown in Fig. 2 were obtained with the same
species, only a single parameter set was used (Table 2). Interestingly, parameter estimates suggest that all
three of 𝑉N

0 , 𝑉P
0 and 𝑉C

0 can be replaced by a single potential-rate parameter, 𝑉0, except the temperature
dependence, 𝑓(𝑇), and that 𝑉C

0 varies as a function of daylength in (2.3):

𝑉C
0 = 𝑓(𝑇) ⋅

𝑉0
(0.5 + 𝐿d)

𝑟d , 𝑉N
0 = 𝑓(𝑇) ⋅ 𝑉0, 𝑉P

0 = 𝑓(𝑇) ⋅ 𝑉0 (2.62)

where 𝑟d is the daylength parameter, which can vary between 0 and 1. For 𝑟d = 0, 𝑉C
0 is independent

of daylength. The model simulations for the two experiments only differ in DIP concentration in the
supply and light intensity. Obviously the model cannot reproduce POP concentrations greater than the
DIP concentration in the supply (Fig. 2B), which could point to measurement problems or indicate that
a true steady state was not achieved in the chemostat.

2.8 Time and depth averages of 𝑆I
In order to account for the decline in light intensity with depth 𝑑, the depth-average of 𝑆I can be obtained
from its depth-integral with the help of the exponential-integral function (Ei):

𝐼(𝑑) = 𝐼0e−𝜀(Chl)⋅𝑑 ⇒ 𝑆I(𝑑) = 1 − e−�𝛼𝐼0e−𝜀(Chl)⋅𝑑, �𝛼 =
𝛼 �𝜃
𝑉C
0

(2.63)

𝑆I
𝑑
=

1
𝑑1 − 𝑑0

𝑑1

�
𝑑0

𝑆I(𝑑)d𝑑 = 1 −
Ei[−�𝛼𝐼(𝑑0)] − Ei[−�𝛼𝐼(𝑑1)]

𝜀(Chl) ⋅ (𝑑1 − 𝑑0)
(2.64)
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Figure 2: Fit of optimal N2 fixation to observations fromMulholland and Bernhardt (2005) and Holl and
Montoya (2008). The thin dotted lines in panel D indicate P concentrations in the supply. Parameter
settings for Trichodesmium sp. from Table 2.

where 𝑆I
𝑑
is the depth-average of 𝑆I in a layer ranging in depth from 𝑑0 to 𝑑1, and 𝜀(Chl) is the Chl-

dependent light-attenuation coefficient. When the diurnal light cycle is not resolved, it is most conve-
nient to use the steady-state solution for �𝜃 and approximate the diurnal light cycle with a triangular light
function. With 𝐼0 and 𝐼1 defined as the mean daytime irradiances at depths 𝑑0 and 𝑑1,

𝐼1 = 𝐼0e−𝜀(Chl)⋅(𝑑1−𝑑0) (2.65)
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Table 2: Parameter estimates for Trichodesmium (Figs. 2), the non-diazotrophic cyanobacterium Syne-
chococcus linearis, and the diatom Thalassiosira fluviatilis.

Parameter Trichodesmium sp. S. linearis T. fluviatilis Units
𝐴0 60 90 70 m3molC−1 d−1

𝛼 3.7 1.4 1.6 m2 dE−1molCgChl−1

𝑄N
s 0.065 0.043 0.023 molNmolC−1

𝑄P
0 0.0027 0.0012 0.0008 molPmolC−1

𝑉0 5 5 5 molmolC−1 d−1

𝑅M 0 0 0 d−1

𝑅Chl
M 0.1 0.1 0.1 d−1

𝜁Chl 0.6 0.4 0.55 molCgChl−1

𝜁N 0.7 0.6 0.75 molCmolN−1

𝐹N0 1.3 — — molNmolC−1 d−1

𝜁F 2 — — molCmolN−1

the depth- and time-averaged light saturation is (stem functions in (2.64) and (2.66) from http://integrals.
wolfram.com):

𝑆I =
1

�
0

1 −
Ei(−2�𝛼𝐼0𝑥) − Ei(−2�𝛼𝐼1𝑥)

𝜀(Chl) ⋅ (𝑑1 − 𝑑0)
d𝑥

=
⎡
⎢⎢⎢⎢⎣𝑥
⎛
⎜⎜⎜⎝1 −

Ei(−2�𝛼𝐼0) − Ei(−2�𝛼𝐼1)
𝜀(Chl) ⋅ (𝑑1 − 𝑑0)

⎞
⎟⎟⎟⎠ −

e−2�𝛼𝐼0𝑥� 𝐼0 − e−2�𝛼𝐼1𝑥� 𝐼1
2�𝛼 ⋅ 𝜀(Chl) ⋅ (𝑑1 − 𝑑0)

⎤
⎥⎥⎥⎥⎦

1

0

= 1 −
Ei(−2�𝛼𝐼0) − Ei(−2�𝛼𝐼1)
𝜀(Chl) ⋅ (𝑑1 − 𝑑0)

−
�1 − e−2�𝛼𝐼1 �� 𝐼1 − �1 − e−2�𝛼𝐼0 �� 𝐼0

2�𝛼 ⋅ 𝜀(Chl) ⋅ (𝑑1 − 𝑑0)

(2.66)

where the factor 2 converts the mean to the maximum in the triangular light cycle. The mean daytime
irradiance is the ratio of the mean daily (24 h) irradiance and daylength fraction 𝐿d.

3 Zooplankton

The C:N:P stoichiometry of the phytoplankton compartment varies and is generally different from the
(constant) composition of the zooplankton. In order to maintain homeostasis, zooplankton thus excrete
or egest some of the ingested material. This is implemented here with a cell-quota factor (𝑓Q), defined as

𝑓Q = min �
𝛱N

𝛱C𝑄N
zoo
,

𝛱P

𝛱C𝑄P
zoo
, 1� , 𝛱𝑛 = 𝜙0 ⋅ �

𝑖∈{bac, phy, det, zoo}
𝜙𝑖𝑛𝑖, 𝑛 ∈ {C, N, P} (3.1)

Zooplankton net growth (𝑉C
zoo) is the difference between assimilation and respiration costs of foraging,

assimilation, and maintenance, corrected for the stoichiometric imbalance and fish mortality in the sur-
face layer,

𝑉C
zoo = [𝐸𝐼C(1 − 𝑐a) − 𝐶zoo(𝑐f𝐴F + 𝑓Tzoo𝑅M)]𝑓Q −𝑀fish ⋅ 𝐶zoo, 𝐸 = 𝐸max

�1 − e
−𝛽�𝐴T𝐴F

−1� � (3.2)
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where 𝐸 is assimilation efficiency, 𝑐a and 𝑐f are the cost of assimilation and foraging coefficients, 𝐼C total C
ingestion, 𝑅M maintenance respiration, 𝐸max = 1 maximum assimilation efficiency, 𝛽 = 0.2 the digestion
coefficient, and 𝐴T and 𝐴F total and foraging activity, respectively. Foraging activity and effective prey
concentration, 𝛱C, determine 𝐼C:

𝐼C = 𝐶zoo𝐴F ̂𝐼, ̂𝐼 = 1 − e−𝛱C (3.3)

where ̂𝐼 is ingestion saturation, 𝜙0 the potential prey capture coefficient, and 𝜙𝑖 and C𝑖 are the food prefer-
ence for and biomass concentration of prey type 𝑖 (phytoplankton, zooplankton). Ingestion of individual
prey types is then

𝐼C𝑖 =
𝜙𝑖C𝑖
𝛱C 𝐼

C, 𝑖 ∈ {bac, phy, det, zoo} (3.4)

Foraging activity is a monotonically increasing function of ̂𝐼:

𝐴F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝛽𝐴T

−1 −W−1 �− �1 −
𝑐f

𝐸max ̂𝐼 (1 − 𝑐a)
� e−(1+𝛽)�

if 𝛱C > 𝛱th

0 if 𝛱 ≤ 𝛱th

(3.5)

whereW−1 is the −1-branch of Lambert’s W function, and 𝛱th the effective feeding threshold, defined as

𝛱th = ln
1

1 −
𝑐f

𝐸max(1 − 𝑐a)

(3.6)

Since𝐴T cannot be observed directly, it is more convenient to calculate𝐴T from the (observed)maximum
ingestion rate 𝐼max, which is obtained for ̂𝐼 = 1:

𝐴T = 𝑓Tzoo
𝐼max
𝛽 �−1 −W−1 �− �1 −

𝑐f
𝐸max (1 − 𝑐a)

� e−(1+𝛽)�� (3.7)

See Pahlow and Prowe (2010) for the derivation of (3.2)–(3.7) and more details. The release of C, N, and
P comprises (dissolved inorganic) excretion (𝑅) and (particulate or dissolved organic) egestion (𝑋):

𝑅C
zoo = 𝐸𝐼C − 𝑉C

zoo −𝑀fish ⋅ 𝐶zoo 𝑋C
zoo = 𝐼C(1 − 𝐸) +𝑀fish ⋅ 𝐶zoo (3.8)

𝑅𝑛
zoo =

𝐼C
𝛱𝑛

𝛱C − 𝑉
C
zoo𝑄𝑛

zoo

1 +
𝑋C
zoo

𝑅C
zoo

𝑋𝑛
zoo = 𝑅𝑛

zoo
𝑋C
zoo

𝑅C
zoo

, 𝑛 ∈ {N, P} (3.9)

Fraction 𝑓𝑋diss of the egestion (𝑋) ends up in the DOM and 1 − 𝑓𝑋diss enters the detritus compartment.

3.1 Zooplankton diel vertical migration

Diel vertical migration (dvm) moves zooplankton down around sunrise and back to the surface around
sunset. Dvm is implemented by calculating vertical velocities (𝑣zoo) in levels above the day-time depth
(𝑑day):

𝑥down = max(𝛥𝑡dvm − |𝑡 − 𝑡sunrise|, 0)
8 (3.10)

𝑥up = max(𝛥𝑡dvm − |𝑡 − 𝑡sunset|, 0)
8 (3.11)

𝑣zoo = 𝑣dvm ⋅ �
𝑥down

𝑥down + 1day
−

𝑥up
𝑥up + 1day

⋅min �2 ⋅max �1 −
𝑑night
𝑑

, 0� , 1�� (3.12)

where 𝑑night is the night-time target depth and 𝑣dvm the maximal migration velocity for dvm. This seems
to work well only with the upwind advection scheme.
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Table 3: Units and definitions of symbols for zooplankton

Symbol Units Definition
𝐴f d−1 foraging activity
𝐴T d−1 potential total activity
𝛽 digestion coefficient
𝑐a cost of assimilation
𝑐f cost of foraging
𝑑summer, 𝑑winter m summer, winter depth of svm
doyasc, doydes doy day of year of ascent, descent

𝒟asc,𝒟des molCdoym−3 𝐶zoo ⋅ doyasc, 𝐶zoo ⋅ doydes
𝛥𝑡svm d width of time window for svm
𝐸max, 𝐸 maximum, actual assimilation efficiency
𝑓Q cell-quota factor
𝑓Tzoo zooplankton temperature dependence
𝑓𝑋diss fraction of dissolved egestion
ℎ m height of current layer
𝐼C molCm−3 d−1 rate of ingestion
̂𝐼 ingestion saturation
𝑀fish d−1 mortality in the surface layer due to fish
𝜙0 m3molC−1 potential prey-capture coefficient
𝜙𝑖 food preferences, 𝑖 ∈ {bac, phy, det, zoo}
𝛱𝑛 effective prey concentration, 𝑛 ∈ {C, N, P}
𝛱th effective feeding threshold
𝑄N

𝑥 , 𝑄P
𝑥 molmolC−1 N:C, P:C ratio of 𝑥, 𝑥 ∈ {bac, phy, det, zoo}

𝑅M d−1 maintenance respiration
𝑅𝑛
zoo molm−3 d−1 zooplankton excretion, 𝑛 ∈ {C, N, P}
𝑡y doy current time of the year
𝑉C
zoo d−1 zooplankton net growth rate

𝑣svm md−1 potential zooplankton vertical velocity during svm
𝑣zoo md−1 zooplankton vertical velocity
𝑣𝒟zoo md−1 apparent vertical velocity of𝒟asc or𝒟des

𝑋𝑛
zoo molm−3 d−1 zooplankton egestion, 𝑛 ∈ {C, N, P}

3.2 Zooplankton seasonal vertical migration

Seasonal vertical migration (svm) is implemented via four traits, the days of the year (doy) of ascent and
descent (doyasc and doydes), and the summer and winter depths (𝑑summer and 𝑑winter). The maximum
vertical velocity of the migration (𝑣svm) is assumed constant, but the motions ramp up smoothly a few
days before and fade out a few days after the actual days of the svm. This is achieved by calculating the
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vertical velocity of the zooplankton (𝑣zoo) as

𝑣zoo = 𝑣svm⋅

⎡
⎢⎢⎢⎢⎢⎣exp

⎛
⎜⎜⎜⎜⎜⎝− �

𝑡y − doydes
𝛥𝑡svm

�
8

− �
𝑑

𝑑winter
�
16
⎞
⎟⎟⎟⎟⎟⎠ ⋅min �

(−1)𝐶zoo
𝐶th

, 1�

− exp

⎛
⎜⎜⎜⎜⎜⎝− �

𝑡y − doyasc
𝛥𝑡svm

�
8

− �
𝑑 − 𝑑winter − 𝑑summer
𝑑winter − 0.5 𝑑summer

�
16
⎞
⎟⎟⎟⎟⎟⎠ ⋅min �

(+1)𝐶zoo
𝐶th

, 1�

⎤
⎥⎥⎥⎥⎥⎦

(3.13)

where the first term describes the descent in autumn (𝑣svm > 0) and the second the ascent in spring
(𝑣svm < 0). 𝛥𝑡svm defines the width of the time-window for the svm, 𝑡y is the current time of the year
in units of days, 𝐶th is a threshold concentration, and (−1)𝐶zoo and (+1)𝐶zoo are the zooplankton concen-
trations above and below the current layer boundary. The reduction of the vertical velocity below the
threshold concentration is necessary for numerical stability.

3.2.1 Hibernation

During hibernation, maintenance costs may be reduced by stopping all foraging activity. This is imple-
mented by applying hibernation factors (𝑓hib) at the hibernation depth (𝑧hib) of the seasonal migrators.

𝑅M =
⎧⎪⎨
⎪⎩
𝑓Rhib ⋅ 𝑅0

M if 𝑧 = 𝑧hib
𝑅0
M otherwise

(3.14)

𝜙 =
⎧⎪⎨
⎪⎩
0 if 𝑓Rhib < 1 and 𝑧 = 𝑧hib
𝜙0 otherwise

(3.15)

where 𝜙0 and 𝑅0
M are the default values of 𝜙 and 𝑅M, respectively.

3.2.2 Days of ascent and descent as dynamic traits

Traits are stored in OPPLA as tracer-trait products, which can be treated mostly as regular (material)
tracers in terms of advection and diffusion (mixing). The svm traits are defined as

𝒟asc = 𝐶zoo ⋅ doyasc (3.16)

𝒟des = 𝐶zoo ⋅ doydes (3.17)

It was impossible to obtain stable simulations with the modified central differencing scheme for vertical
motions apparently as a consequence of the tight feed-back between changes in doyasc, doydes and the
vertical velocity. Thus, the boundary concentrations of𝒟asc and𝒟des are obtained as the products of the
corresponding upwind doy and central Czoo:

(0)𝒟𝑥 =

⎧⎪⎪⎨
⎪⎪⎩

(0)𝐶zoo ⋅ (−1)doy𝑥 for 𝑣zoo > 0
(0)𝐶zoo ⋅ (+1)doy𝑥 for 𝑣zoo < 0

, 𝑥 ∈ {asc, des} (3.18)

where the left superscripts indicate quantities at the boundary (0) and in the adjacent upper (−1) and
lower (+1) layers.

Zooplankton net growth introduces changes in𝒟asc and𝒟des,

𝒟̇𝑥 = 𝑉C
zoo ⋅ doy𝑥, 𝑥 ∈ {asc, des} (3.19)

which keep doyasc and doydes steady. Trait variations (in doyasc and doydes) result from the assumption
that the animals take the current time of the year (𝑡y) with them as their day of ascent or descent when
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leaving their winter or summer depth, respectively. It is further assumed here that the trait distribution of
the remaining population is unaffected by this process. This (passive) change of the traits is implemented
by modifying 𝒟̇asc and 𝒟̇des adjacent to the summer or winter layers in the direction of migration:

(−1)𝒟̇asc = (−1)𝒟̇asc −

⎧⎪⎪⎨
⎪⎪⎩
((0)𝐶zoo ⋅ 𝑡y − (0)𝒟asc) ⋅

𝑣zoo
(−1)ℎ

for 𝑣zoo < 0 ∧ 𝑑 ≈ 𝑑winter

0 otherwise
(3.20)

(+1)𝒟̇des = (+1)𝒟̇des +

⎧⎪⎪⎨
⎪⎪⎩
((0)𝐶zoo ⋅ 𝑡y − (0)𝒟asc) ⋅

𝑣zoo
(+1)ℎ

for 𝑣zoo > 0 ∧ 𝑑 ≈ 𝑑summer

0 otherwise
(3.21)

where (−1)ℎ and (+1)ℎ are the heights of the adjacent layers and the ≈ symbol indicates that the calculation
is applied only for the layer encompassing 𝑑summer or 𝑑winter.
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