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Abstract. Here we present an equation for the estimation of

nitrate in surface waters of the North Atlantic Ocean (40◦N
to 52◦ N, 10◦W to 60◦W). The equation was derived by
multiple linear regression (MLR) from nitrate, sea surface

temperature (SST) observational data and model mixed layer

depth (MLD) data. The observational data were taken from

merchant vessels that have crossed the North Atlantic on a

regular basis in 2002/2003 and from 2005 to the present. It

is important to find a robust and realistic estimate of MLD

because the deepening of the mixed layer is crucial for ni-

trate supply to the surface. We compared model data from

two models (FOAM and Mercator) with MLD derived from

float data (using various criteria). The Mercator model gives

a MLD estimate that is close to the MLD derived from floats.

MLR was established using SST, MLD from Mercator, time

and latitude as predictors. Additionally a neural network was

trained with the same dataset and the results were validated

against both model data as a “ground truth” and an indepen-

dent observational dataset. This validation produced RMS

errors of the same order for MLR and the neural network ap-

proach. We conclude that it is possible to estimate nitrate

concentrations with an uncertainty of ±1.4 µmol L−1 in the
North Atlantic.

1 Introduction

Estimating seasonal new production is fundamental for our

understanding of the global carbon cycle. Especially in re-

gions where nitrate is depleted during summer the amount of

nitrate that is available at the onset of the productive season
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is essential for further production estimates estimates. Inter-

annual changes of the nitrate availability will directly influ-

ence new production and carbon drawdown (Koeve, 2001).

But estimating nutrient fluxes into the upper ocean and their

subsequent utilisation by marine primary production is still a

big challenge in oceanography. Even though there are con-

tinuous sampling programs at Bermuda Atlantic Time Series

(BATS, Bates, 2007) station in the western North Atlantic

and European Station for Time Series in the Ocean, Canary

Islands (ESTOC, González-Dávila et al., 2007) in the eastern

part of the subtropical North Atlantic, it is impossible to map

nutrient variability for the whole basin. The mechanism of

nutrient supply is very different at the two stations: at BATS

it is mainly driven by eddies and at ESTOC by winter con-

vection (Cianca et al., 2007). Furthermore these two stations

are located in the subtropical gyre where seasonality is low.

In the temperate North Atlantic, between 30◦N and 60◦ N,
the coverage of surface nutrient data is sparse especially be-

cause of very few wintertime observations. Körtzinger et al.

(2008) and Hartman et al. (2010) reported the seasonal cycle

of nutrient data for the years 2003/2004 with data from a sin-

gle location, the Porcupine Abyssal Plain site (PAP), located

in the temperate North East Atlantic Ocean (49◦N, 16.5◦W).
Some work has been done to estimate winter nitrate

concentrations from nitrate-density relationships (Garside

and Garside, 1995), nitrate-temperature/density relationships

(Kamykowski and Zentara, 1986; Sherlock et al., 2007) or

to estimate nutrient fields from remotely sensed data (Goes

et al., 2000; Kamykowski et al., 2002; Switzer et al., 2003).

Several other attempts were made to estimate wintertime ni-

trate concentration (e.g. Takahashi et al., 1985; Glover and

Brewer, 1988; Körtzinger et al., 2001; Koeve, 2001) as the

values at the onset of the productive season are crucial to as-

sess new production (Minas and Codespoti, 1993).
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Another possible application of predicting seasonal nutri-

ent cycles, that are not based on climatology, is the parame-

terization of CO2 partial pressure in seawater (pCO2). Stud-

ies have been performed to relate the pCO2 in the North At-

lantic to remotely sensed data (Lefèvre et al., 2005; Jamet

et al., 2007; Lüger et al., 2008; Chierici et al., 2009; Friedrich

and Oschlies, 2009a,b; Telszewski et al., 2009) as it is driven

by many factors: thermodynamics, biology, mixing and air-

sea gas exchange. Chlorophyll a (chl-a) concentrations are

often employed to estimate the biological driver of the pCO2,

but the utility of chl-a for this purpose is rather limited (Ono

et al., 2004; Lüger et al., 2008). Given that nitrate changes

are directly related to new production we believe that estima-

tion of the entire seasonal cycle of nitrate could also improve

pCO2 predictions.

Here we present (and compare) two methods using obser-

vational data to estimate mixed-layer nitrate in the North At-

lantic between 40◦ N and 52◦ N and 10◦W and 60◦W. The
first method is a multi linear regression (MLR) and the sec-

ond method used the same data to train a neural network.

However, the quality of any prediction depends on the

quality of the predictors. Therefore we chose the variables to

be used in the prediction, sea surface temperature (SST) and

MLD, very carefully. Reliable and well tested SST prod-

ucts are available (e.g. the Advanced Microwave Scanning

Radiometer-EOS (AMSR-E) on NASA EOS Aqua satellite,

Emery et al., 2006). The situation is more complicated for

MLD because there is no uniform criterion for its estimation.

Numerous criteria for the estimation of MLD can be found

in the literature (e.g. Kara et al., 2003; de Boyer Montégut

et al., 2004) and often the criteria need to be adjusted re-

gionally. The proposed criteria vary from simple temper-

ature difference criteria to advanced methods such as the

curvature criterion of Lorbacher et al. (2006) that uses the

shape of vertical profiles (temperature or density). For all

these criteria temperature/density profiles are required for

the MLD estimation. Alternatively, MLD climatologies or

MLD estimates from models can be used. In this study we

compare MLD calculated from in-situ measured profiles (i.e.

by ARGO floats), MLD climatology of Monterey and Lev-

itus (1997), and MLD estimates from two different models

(FOAM and Mercator).

2 Data and calculations

2.1 Discrete water samples

We used data from water samples taken on “Volunteer Ob-

serving Ships” (VOS) along a trans-Atlantic route between

Europe and North America (Fig. 1a). The studies were

part of two European research projects: CArbon VAriability

Studies by Ships Of Opportunity (CAVASSOO) and CAR-

BOOCEAN. During CAVASSOO (2002/2003) samples were

collected from the merchant vessel M/V Falstaff (Wallenius

Fig. 1. (a) Location of samples used in this study. Triangles de-

note samples taken in 2002 and 2003 and squares denote samples

taken since 2005. For validation purpose we also used data from

another VOS line (UK-Caribbean), that was sampled in 2002/2003

by the National Oceanographic Center (NOC), Southampton (cir-

cles). The diamonds denote the position of the three time series sta-

tions BATS, ESTOC and PAP, as well as one location that is used

for demonstration (refer to Fig. 5). (b) Number of month sampled

within a 2◦ Latitude × 2.5◦ Longitude box.

Lines, Stockholm, Sweden). The M/V Falstaff was also used

at the onset of CARBOOCEAN in 2005 but was changed

to a new ship, the M/V Atlantic Companion (Atlantic Con-

tainer Lines, New Jersey, USA), in 2006. Both ships were

outfitted with autonomous instruments that measure pCO2
(Lüger et al., 2004). At the same time sea surface tempera-

ture (SST) and salinity (SSS) were measured using Seabird

thermosalinographs (SBE21 or SBE45) with external SBE38

temperature sensors that were located near the seawater in-

take. The setup of the sampling line were different on both

ships. Onboard M/V Falstaff a 4m insulated pipe was con-

nected to the small starboard side sea chest, used for the evap-

orator of the ship, leading to the SBE21. The manifold of the

SBE21 was used to divide the water and one line was used

for discrete water samples (i.e. nutrients). During CAVAS-

SOO the water flowed to the manifold just by hydrostatic

pressure. During CARBOOCEAN a torque-flow pump was

installed before the SBE21. Onboard M/V Atlantic Compan-

ion a 15m insulated pipe was connected to a rear starboard
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side seachest, that was used only by us. A torque-flow pump

was installed near the seachest to pump the water to the sam-

pling site. The water depth of both seachests varied between

4 and 8m depending on the draught of the ship.

On both ships samples were taken by trained IFM-

GEOMAR personnel and we employed the same sampling

procedure for the nitrate samples: seawater was drawn

into 60mL plastic bottles that were immediately frozen at

−18◦C. The storage and transportation of the samples was no
problem because the freezer was next to the sampling point

and samples were removed when the ships stopped in Ger-

many. They were transported in cooling boxes to the labora-

tory and analyzed at the IFM-GEOMAR, Kiel, following the

method of Hansen and Koroleff (1999). The overall accuracy

of these samples is ±3% in the range of 0–10 µmol L−1. The
data were manually inspected for each cruise seperately and

data were flagged (good, suspicious or bad). In this study

we used only data that were flagged “good” and that were

taken at water depths deeper than 1000m, in order to exclude

any influence by shelf waters. We used 413 samples (spread

over 4 years) from 28 different cruises for our calculation.

Figure 1a shows the positions of the samples. The earlier

data taken on the M/V Falstaff (black triangles) are located

closer to the southern end of the study region, covering a lat-

itudinal band between 40◦ N and 50◦ N. The data from the

M/V Atlantic Companion (grey squares) are located further

to the north between 45◦ N and 55◦ N. Figure 1b shows the
number of month where data were available in 2◦ Latitude×
2.5◦ Longitude boxes. The maximum number of month with
samples per pixel is 6. The cruises are equally distributed

over the seasons, so that the linear interpolation approach is

an adequate method to fill the gaps between the measured

locations.

2.2 Mixed layer depth

We compared MLD estimations from the climatology of

Monterey and Levitus (1997), the output of two ocean mod-

els, and calculated by applying different criteria on vertical

temperature profiles measured by the ARGO float network in

order to identify the most suitable MLD estimate. The data

from the ARGO floats were collected and made freely avail-

able by the Coriolis project and programmes that contribute

to it (http://www.coriolis.eu.org).

2.2.1 MLD calculated from ARGO data

We downloaded all profile data available for the time period

2002–2007 in our study region from the ARGO website. All

profiles were linearly interpolated onto 5m depth intervals.

MLD was calculated only from temperature profiles for this

comparison, because the number of profiles including both

temperature and salinity is less than the number of temper-

ature profiles. We note that calculations based on a temper-

ature criterion represent the iso-thermal layer (ILD) which

can be different from the MLD (Kara et al., 2003), but we

assume this difference to be negligible for our comparison

study. Thomson and Fine (2002) have shown that using tem-

perature related MLD estimates are preferable for biologi-

cal applications. We used only profiles with at least 10 data

points, with the uppermost data points shallower than 15m.

For the specified time period we found more than 23 000 pro-

files. The MLD was calculated using the commonly used

threshold difference method with various!T (!T = 0.2 ◦C,
0.5 ◦C and 1 ◦C). We used the uppermost data point of each
profile (≤15m) as the surface reference temperature. In ad-
dition to these simple difference criteria, we also applied the

curvature criterion of Lorbacher et al. (2006) that defines the

MLD by the curvature of the given profile (temperature or

density). We used a Matlab!routine that was provided by
the authors for the calculation.

2.2.2 Climatological MLD

The MLD climatology of Monterey and Levitus (1997) con-

tains monthly MLD fields on a 1◦×1◦ grid for the global
ocean. MLD is calculated based on three different criteria:

a temperature difference, a density difference, and a variable

density change. As previous stated, we used only the data

calculated with the temperature difference criterion, which

employs a surface-to-depth difference of 0.5 ◦C.

2.2.3 Modelled MLD

For the modelled MLD we chose the output from

two models: (a) Forecasting Ocean Assimilation Model

(FOAM) from the Met Office, UK (http://www.ncof.co.uk/

FOAM-System-Description.html) and (b) Mercator Project,

France (www.mercator-ocean.fr). The two models provide

daily MLD from 2002 with a spatial resolution of 1/8◦×1/8◦

and 1/6◦×1/6◦, for FOAM and Mercator, respectively. A dif-

ference criterion of 1 ◦C for temperature and 0.05 kgm−3 for
density is used in the FOAM model while difference criteria

of 0.2 ◦C and 0.01 kgm−3 are used for Mercator.

2.2.4 Comparison of MLD estimates

We randomly chose 31 temperature profiles from ARGO

floats for the comparison, for which we calculated the MLD

using the different criteria mentioned above. Figure 2 shows

two typical examples of temperature profiles with the various

MLD estimates. We also tried to manually identify a best

MLD estimate as a reference point by the “eyeball” method,

i.e. a phenomenological identification of the MLD. We de-

termined the climatological value and the model data for this

specific time and position and calculated the difference be-

tween the various MLD estimates and the “eyeball” refer-

ence MLD. The mean values for these 31 profiles are shown

in Fig. 3. Although the criterion of Lorbacher et al. (2006)

appears to yield the best MLD estimate, we decided to use

the MLD output from a model for further calculations for the
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Fig. 2. Two examples of vertical temperature profiles from ARGO

floats with the MLD assigned using various techniques or sources.

The orange Xs denote the eyeball reference MLD. Top: summer

temperature profile. Bottom: winter temperature profile.

following reasons: 1) despite the huge number of floats in the

ocean (3190 floats in October 2008) the coverage is spatially

and temporally sparse compared to the model, 2) existence

of a diel cycle in the MLD (Price et al., 1986) may bias MLD

estimation when using real profiles. We calculated the dif-

ference between the MLD computed with the Lorbacher cri-

terion and the MLD estimations from Mercator and FOAM,

respectively (!MLD=MLDLorb. −MLDModel). The mean
difference was −24.2±104.2m (RMSE) for Mercator and

117.5±405.2m (RMSE) for FOAM and therefore we opted

for the MLD from Mercator.

2.3 Multiple Linear Regression (MLR)

Our ultimate goal was to develop a predictive equation for

mixed layer nitrate on the basis of a minimum number of

variables that are publicly available. Our initial list of pre-

dictors were the following parameters: SST, MLD, latitude

(Lat), longitude (Lon) and time (t), where t is the day of the

year. To take into account that the first and the last day of a

year have nearly the same influence on our dataset we per-

formed a sinusoidal transformation to the actual day of the

year analogous to Nojiri et al. (1999).

991-68-55-11-01- 141-

004-

003-

002-

001-

0

001

MAOFL+M1T2.0TcreMroL

Fig. 3. Comparison of MLD estimates. The bars denote the mean

difference between the eyeball defined MLD and the respective es-

timated MLD for 31 profiles. The exact mean differences are shown

above each bar. Negative values indicate that the product defines a

deeper MLD than the eyeball reference and vice versa. The error

bars are the standard deviation (1σ ). Abbreviations: Lor: criterion

of Lorbacher et al. (2006), Merc: data from Mercator model, T0.2:

temperature difference criterion with !T =0.2 ◦C, T1: temperature
difference criterion with !T =1 ◦C, M+L: data from Monterey and
Levitus (1997) climatology, FOAM: data from FOAM model.

We employed a common logarithmic expression of SST-

nitrate relationship because SST shows rather large variabil-

ity when the nitrate concentration is low (i.e. during summer

time). The logarithmic formulation results in a drecrease of

this non-linear character of the SST. We explicitly used in

situ SST and not remotely sensed data to keep the errors as-

sociated with the establishment of the algorithm as small as

possible. The use of different SST products derived for ex-

ample from satellites is discussed below.

All MLRs were calculated using the STATISTICA! soft-

ware package (StatSoft, Tulsa, USA). In the first step we used

all variables for the MLR (Lat, Lon, log(SST), MLD and t).

The longitudinal information turned out to be statistically in-

significant and we repeated theMLRwithout longitude. Now

all residing variables turned out to be statistically significant.

This procedure ensured that the resulting equation includes

only a minimum of the available parameters that are neces-

sary to estimate the nitrate cycle. Our set of predictive vari-

ables results in the following best-fit equation:

NO3= 0.274×Lat−5.445× log(SST)+0.006×MLD
+3.142×sin(2π t

365
)+1.110×cos(2π t

365
)−3.345 (1)

where nitrate is in µmol L−1, SST in ◦C, MLD in m and t

denotes the day of the year. The MLR used 413 datapoints

and the adjusted R2 value is 0.82.
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To study possible improvements by adding chl-a data

from SeaWifs (http://oceancolor.gsfc.nasa.gov) to the initial

dataset we performed a MLR with SST, MLD, Lat, Lon, time

and chl-a as predictors. The chl-data were 8 day composites

with 9km resolution (at the equator). The adjusted R2 value

of the resulting equation is also 0.82. A major drawback of

adding chl-a is the reduction of datapoints for the MLR. Due

to the typical clouds above the North Atlantic the cases were

we had data for nitrate, MLD and chl-a were reduced to 230.

Therefore we did not include chl-a in the algorithm.

2.4 Self-Organizing Map (SOM)

The regression coefficients provide information about physi-

cal relationships between nitrate and SST or MLD, respec-

tively, if the predictors of a MLR are independent. The

drawback of this method is the limitation to a linear relation

and (even for a polynomial regression) the fitting to a pre-

defined function. Therefore, a neural network approach was

additionally employed using a self-organizing map. SOMs

were introduced to science by Kohonen (1982) and suc-

cessfully applied to oceanographic data by Lefèvre et al.

(2005), Friedrich and Oschlies (2009a,b) and Telszewski

et al. (2009). SOMs are able to estimate a target value (e.g.

nitrate) from related parameters (e.g. MLD, SST) without

fitting to a predefined function by recognizing relationships

in the observational data during the training process. The

same predictive parameters used in the MLR (Eq. 1) were

employed in the SOM.

2.5 Algorithm validation

2.5.1 Validation against observational data

We performed several tests to evaluate the predictive power

of the algorithm for mixed layer nitrate (Eq. 1) and for the

SOM estimations. Figure 4 shows that the calculated data

(MLR) are generally in good agreement with the measure-

ments, although there are obvious differences in spring and

autumn. Negative nitrate values are predicted during the

summer when nitrate is depleted but for a simple linear ap-

proach allowing for random error the prediction of nega-

tive values is the only way to produce a period of zero ni-

trate. All predicted negative values were set to zero for

further calculations. The higher deviations in spring and

autumn may arise from small scale variability (patchiness)

and cannot be reproduced through our simple MLR ap-

proach. By comparing the measured training data with the

estimated data it results in a mean underestimation of nitrate

of 0.1±1.4 µmol L−1 (RMSE). The same comparison with
the algorithm that includes the chl-a term leads to an overes-

timation of 8.2±8.3 µmol L−1 (RMSE), which might be due
to the sparse data coverage.

In addition, we randomly chose 100 data points to ex-

clude from the entire dataset and performed a MLR with
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Fig. 4. (a) Surface nitrate concentration versus day of the year for

all data taken between 2002 and 2007. Black dots are the measured

concentrations and grey triangles denote predicted concentrations.

(b) Difference between measured and calculated nitrate data. Neg-

ative values show overestimation of the MLR with respect to the

measured nitrate and vice versa.

the remaining data. The coefficients of the resulting equa-

tion were of the same order as the ones in Eq. (1). We used

this equation to estimate the nitrate concentration for the 100

data points we deleted for the MLR. We performed this test

three times and calculated the mean deviation for the cho-

sen data points each time. The resulting deviations were be-

tween −0.4 µmol L−1 and 0.0 µmol L−1 with an RMSE of
1.4 µmol L−1 for all runs.
We also employed a completely independent data set for

comparison. During CAVASSOO the National Oceanog-

raphy Center, Southampton, UK (NOC) took nitrate sam-

ples onboard the VOS M/V Santa Lucia and M/V Santa
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Maria, respectively. Both ships were sailing between the

UK and Carribean (Fig. 1) and produced more than 600 ni-

trate samples between May 2002 and December 2003 in the

area north of 40◦ N. We used the SST from their dataset

and the matching MLD from Mercator to estimate corre-

sponding nitrate data with both methods: SOM and MLR.

Since we do not have the MLD for all 2002 dates we in-

cluded only 344 datapoints. In average nitrate was under-

estimated by 0.6±1.2 µmol L−1 (RMSE) with the MLR and
overestimated by 0.4±1.5 µmol L−1 (RMSE) with the SOM.
Using only data between 10◦W and 50◦W (the SOM was

trained only in this region) the MLR underestimates nitrate

by 0.5±1.1 µmol L−1 (RMSE) and the SOM overestimates it

by 0.3±1.3 µmol L−1 (RMSE).
Figure 5 shows the intra and interannual variability of SST,

MLD and nitrate concentration for the time period between

2002 and 2007 for two example locations: eastern (49◦ N,
16.5◦W, PAP) and western (40◦ N, 49◦W) North Atlantic.
SST and nitrate are also available for a whole annual cycle in

2002/2003 at the PAP site (Körtzinger et al., 2008), resulting

in another independent dataset. The West Atlantic location

was chosen to illustrate the limitations of a MLR approach

because the Labrador current may introduce short term vari-

ability on a daily timescale. The corresponding SST and ni-

trate values measured onboard one of the VOS lines men-

tioned above were added to the plot if one of the VOS line

crossed an area of 1◦×1◦ (2◦×2◦) latitude/longitude around
the location within one day. The annual amplitude of SST

is more pronounced in the western region and the short term

variability is also higher. The VOS SST measurements are in

good agreement with AMSR-E in the eastern region. Devia-

tions can be seen in the westerly region due to the high short

term variability there, especially if data are from a 2◦×2◦

grid cell. This short term variability at the westerly location

also results in deviation of the VOS measured nitrate data

from the predicted concentrations.

The MLD amplitude is slightly higher at PAP station. The

instruments at PAP were deployed in approximately 30m

depth and Körtzinger et al. (2008) excluded data that were

measured below the thermocline. The SST data measured

at PAP and from the VOS lines agree with the data from

AMSR-E. This results in good agreement between measure-

ments and predicted values of nitrate. In contrast to the mea-

sured and SOM estimated nitrate data the (MLR) calculated

nitrate data show a smooth seasonality. A comparison of the

latter two results in a RMS error of 0.9 µmol L−1. A compar-
ison of the SOM calculated data and the measured values at

PAP results in a RMS error of 1.4 µmol L−1. However, the
SOM estimates in the western part are in better agreement

with the measured data. Figure 5 (second row) shows the dif-

ference between MRL estimated nitrate and the other nitrate

products. The SOM estimates and the VOS measurements

deviate mostly in the same order and direction.

2.5.2 Validation using a biogeochemical model

Predicted nitrate concentrations were also validated against

nitrate concentrations predicted by a high-resolution

nitrogen-based nitrate-phytoplankton-zooplankton-detritus

model of the North Atlantic. All model details are described

in Oschlies et al. (2000) and Eden and Oschlies (2006). The

advantage of this model-based validation is that the model

produces daily nitrate fields with a horizontal resolution of

1/12◦×1/12◦ latitude/longitude which can be used as a basin
wide “ground-truth” to assess the accuracy of the nitrate

estimates generated by the MLR and the SOM, respectively.

The model output of SST, MLD and nitrate was sampled

according to the time (day of the year) and position of the

actual nitrate measurements during the period of June 2002

to May 2003, where error of nitrate measurements was not

considered. This model-generated data set was then used to

calculate a MLR and to train a SOM. The input parameters

for both approaches were the same as for the observational

data: Lat, SST, MLD and time (day of the year). Monthly

mean model outputs of SST and MLD were used to generate

nitrate estimates from both methods. Figure 6i shows the

annual cycle of nitrate simulated by the model in the domain

covered by the nitrate sampling (40◦ N to 52◦N, 10◦W to

50◦W) and the annual cycle of the nitrate estimates derived
from the model-generated data set by the MLR and the

SOM, respectively. The general pattern of the annual cycle

can be reproduced by the estimates. High winter nitrate

concentrations are underestimated. The SOM estimate has

a higher accuracy in reproducing the late summer nitrate

minimum. It is apparent that the mapping fails in the

north-western part of the basin because of the spatial and

temporal distribution of the nitrate mapping error (Fig. 6a–d

(MLR) and 6e–h (SOM)). This applies for both the MLR and

for the SOM. High nitrate values occurring in the Labrador

current cannot be reproduced by either estimate. This

disparity may be due to the sparse observational coverage

of the considered region or to the highly variable current

system in this region. The basin wide RMS-error for our

model-based validation amounts to 2.1 µmol L−1 for the
SOM estimate and 2.2 µmol L−1 for the MLR estimate

which is significantly higher than the error derived from the

validation against independent observational data.

2.5.3 Error estimation

The uncertainty in nitrate estimation of 1.4 µmol L−1 appears
for different validation approaches. Therefore we speculate

that this is the uncertainty within the training dataset itself

that arises for instance from sampling/measurement errors or

problems in the water supply (e.g. biofouling). Thus it is im-

possible to estimate nitrate with an uncertainty better than

±1.4 µmol L−1 with the presented algorithm. Another error
source can be small scale variability that can not be covered

with a simple MLR approach, whereas mesoscale variability

Biogeosciences, 7, 795–807, 2010 www.biogeosciences.net/7/795/2010/
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Fig. 5. Seasonality of nitrate, MLD and SST for the time period between 2002 and 2007 for a single location in the western and eastern parts

(PAP site) of the North Atlantic, respectively. The panels in the first row show the nitrate concentration calculated with the MLR and SOM,

respectively. Nitrate measurements from PAP mooring and VOS lines that passed within a 1◦×1◦ and 2◦×2◦ grid cell, respectively, are
shown. The panels in the second row show the difference between measured and estimated nitrate using the same data as in the upper panels.

Negative values show overestimation of the MLR and vice versa. The panels in the third row show the MLD taken from Mercator (mean

value of ±0.5◦ Lat/Lon around the location). The lower two panels show the SST from AMSR-E (mean value of ±0.5◦ Lat/Lon around the
location) and measured SST from VOS lines. Also shown are the SST measurements from the PAP site in the eastern part.

should only add random noise to the data. The effect could

be seen when we tried to estimate nitrate in the area of the

Labrador current (Fig. 6): the uncertainty of the estimates

increases rapidly. A minor drawback of a MLR is the lin-

ear correlation of the predictors itself. So it is clear that SST

is corellated to Lat or time. In oceanography it is a gen-

eral problem that variables are correlated, but given that each

variable influences the result in a different way it was accept-

able to use variables that are somehow correlated.

Olsen et al. (2004) analysed the deviation between satel-

lite derived SST and in situ measured SST. They found dif-

ferences of up to 1 ◦C. The minimum and maximum SST

within our dataset is 5.9 ◦C and 25.6 ◦C, respectively. The
maximum error would be between 4% and 20%. An error

of 20% (4%) in SST would result in an error in nitrate of

0.4 µmol L−1 (0.1 µmol L−1). In contrast, Emery et al. (2006)
showed that the AdvancedMicrowave Scanning Radiometer-

EOS (AMSR-E) on NASA EOS Aqua satellite produces SST

www.biogeosciences.net/7/795/2010/ Biogeosciences, 7, 795–807, 2010
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Fig. 6. RMS errors for nitrate estimates in µmol L−1 using a MLR (a–d) or SOM (e–h) technique in summer, fall, winter and spring,

respectively. (i) Annual cycle of simulated “true” nitrate (black), and nitrate estimates using the SOM (red) or MLR (blue) technique for the

region shown in (a–h). RMS errors and annual cycles were calculated using a biogeochemical model.

data that are in good agreement with the in situ measured

SST. We suggest that using the temperature from AMSR-E

(http://www.ssmi.com/amsr) will introduce only a small er-

ror.

The choice of MLD can lead to huge over- or

underestimations of MLD. To assess the influence of

over/underestimation of MLD, we calculated the error in ni-

trate that will arise from an uncertainty of 50m in the MLD.

The resulting error is approximately 0.3 µmol L−1.

3 Discussion

3.1 MLD estimations and variability

Our results indicate that it is possible to find a robust MLD

estimate with a good temporal and spatial resolution. Al-

though using in-situ profiles results in the best estimation of

the MLD at a specific position and time the resolution of the

ARGO network is too sparse for reflecting an annual cycle

of MLD on the scale of the entire North Atlantic Ocean. In

contrast, climatological MLD estimates (e.g. Monterey and

Levitus, 1997; de Boyer Montégut et al., 2004) have uniform

resolution but do not reflect interannual changes and show

Biogeosciences, 7, 795–807, 2010 www.biogeosciences.net/7/795/2010/
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considerable deviations from observations (e.g. tend to sig-

nificantly overpredict MLD). Using MLD generated by mod-

els could be a compromise: data are produced on a daily ba-

sis, on a regular grid, and can be in good agreement with ob-

servations. Here we compare results from two models since

the model dependent differences are large.

For in-situ profiles, such as those measured by floats, the

curvature criterion of Lorbacher et al. (2006) results in MLD

that are closest to those which are eyeball-defined (Fig. 3).

The model output from FOAM yields MLD that are sig-

nificantly deeper than in-situ observations. This finding is

in good agreement with de Boyer Montégut et al. (2004)

who, among others, showed that a temperature criterion of

1 ◦C (see Fig. 2.2.3) is too large for the subpolar North At-
lantic. We chose the model output of the Mercator project, as

this provides high resolution and MLD that are close to the

eyeball-defined MLD.

We examined the variability in the reliably estimatedMLD

during the entire time period to understand the dynamics in

the region. The mixed layer in the subpolar North Atlantic

shows a clear seasonality (Fig. 5): during summer the MLD

may be only a few tens of meters while, in wintertime, depths

greater than 350m can be reached. We carefully inspected

the dynamics of the winter MLD since its deepening supplies

nutrients to the sea surface (Oschlies, 2002). This makes

the MLD one of the main forcing features in this region’s

biogeochemistry (Oschlies, 2002). It is well known that the

maximum winter MLD increases with latitude and numerous

studies have shown that a local maximum in the winter MLD

exists between 45◦ N and 50◦ N in the North Atlantic (e.g.
Koeve, 2001; de Coëtlogon and Frankignoul, 2003). The re-

gion of occurrence of the maximum MLD is known to be a

region of most intense wintertime ocean heat loss (Marshall,

2005). Due to this rapid cooling at the surface the density

rapidly increases and the surface waters along the North At-

lantic Drift (NAD) are mixed much deeper than to the north

and south of this region. Figure 7 shows the MLD as calcu-

lated by Mercator for 10 March, 2006. The maximum MLD

along the NAD is clearly visible.

3.2 Nitrate estimations

The nitrate data show a clear seasonality (Fig. 4a), with

nitrate depletion during summer and the highest values in

spring (8–12 µmol L−1). The data during summer show low
variability due to depletion of nitrate in the whole study area.

Higher scatter can be observed in the data during the rest of

the year. This is probably due to small scale variability of

the sampled surface water (patchiness) as well as to the large

latitudinal range of the cruise tracks (Fig. 1a).

The validation of the presented algorithm shows that 82%

of the nitrate variabilty is explained by Eq. (1). It turned out

that it was a reasonable approach to use a MLR for the 413

datapoints that are spread over 4 years, because the data that

were used for the algorithm are distributed over the whole
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Fig. 7. MLD for 10 March 2006 as calculated by Mercator.

range of the predicting variables (Lat, day of the year, SST

and MLD).

As expected, the latitude and time in the MLR-algorithm

explain most of the nitrate variability (Garcia et al., 2006).

The latitudinal dependence was mentioned in various studies

(e.g Koeve, 2001; Kamykowski et al., 2002) and, together

with time, it represents nearly a climatological annual nitrate

cycle that is very stable within our study area.

The algorithm can be adjusted to capture the interannu-

ally varying conditions by adding SST and MLD (provided

they are not taken from climatologies). They reflect the ac-

tual conditions that can drive biological production and can

change from year to year as well as from one place to an-

other. The MLD appears to be a good indicator of the vari-

able vertical supply of nitrate. Figure 8 shows the differ-

ence between measured nitrate and nitrate estimations that

were calculated from an equation that uses only Lat and time

and from Eq. (1). For this purpose we performed a MLR

with the same dataset using only Lat and time as predictors.

Then the difference between the measured nitrate concentra-

tions of the independent dataset of the NOC and estimations

from the climatological approach and from Eq. (1) were cal-

culated. During most of the year the difference between the

algorithm that uses only Lat and time and the one that uses

also SST and MLD as predictors is small. But the most in-

teresting time are the winter months (February–March) when

MLD reaches its maximum and fresh nitrate is mixed into the

surface. Figure 8 shows clearly that both algorithms overes-

timate the winter nitrate concentration, but the error with the

climatological approach is bigger compared to Eq. (1). So we

can state that inclusion of SST and MLD shows an improve-

ment that is of the order of the interannual variability. This

variability in the nitrate supply that is linked to variability in

MLD will result in interannual variations in biological pro-

duction that will therefore influence the carbon drawdown.
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Fig. 8. Monthly mean difference between measured and estimated

nitrate. The nitrate estimations were made (1) only from Lat and

time and (2) with Eq. (1). The measured nitrate data are from the

NOC dataset that was not used for the establishment of the algo-

rithm.

The increase in winter time mixed layer between 2004 and

2007 (Fig. 5, third row) in both basins, east and west, results

in an increase in nitrate concentrations. Figure 9a–c shows

averaged values of the February/March data of MLD, SST

and estimated MLR nitrate concentration at PAP site.

Adding chl-a to the algorithm did not lead to improve-

ments of the result what might be caused by two factors: (i)

the reduction of number of samples from 413 to 230; and

(ii) The ratio of converted nitrate to chl-a is not a constant

ratio (e.g. Hydes et al., 2001; Kähler and Koeve, 2001). At

the onset of a bloom where nitrate is high and chl-a is low

the nitrate consumption is high and particulate organic mate-

rial has low C/N values (Körtzinger et al., 2001). During the

bloom this conversion factor will change due to the reduced

availability of nitrate and this change can not be covered by

an easy algorithm like the presented one.

The small interannual variations of ca. 1.5 µmol L−1 (e.g.
Fig. 5) can be explained by the fact that the data fall in nearly

one biogeographic province as defined by Oliver and Irwin

(2008). Following the classification of Longhurst (2007), our

sampling area covers three provinces (Gulf Stream (GFST),

North Atlantic drift (NADR) and North Atlantic subtropical

gyre (NAST(E)) province). There are certain differences be-

tween these provinces, but the ecological processes are pri-

marily driven by the same physical processes. Longhurst

(2007) defined 6 cases of physical control, of which GFST

and NADR are assigned to the same case: “nutrient-limited

spring production peak”. NAST(E) is assigned to another

case (“winter-spring production with nutrient limitation”) but

these samples contribute only 5% of our dataset and are lo-

cated at the northern border of the NAST(E) province. As

the borders between the certain provinces are not very strict,

we can state that our dataset also fits in one biogeographical

province as defined by Longhurst (2007).

The overall uncertainty in predicting nitrate with the pre-

sented MLR-algorithm and SOM is 1.4 µmol L−1. As this
uncertainty appears by different validation approaches we

believe that this is the internal uncertainty of the presented

dataset. Initially this does not appear to be better than al-

gorithms presented in former studies (e.g. Kamykowski and

Zentara, 1986; Garside and Garside, 1995; Goes et al., 2000;

Kamykowski et al., 2002; Switzer et al., 2003). But some of

them are presenting algorithms only for other regions than

the North Atlantic (Goes et al., 2000; Kamykowski and Zen-

tara, 1986) or present gridded estimations on 10◦×10◦ grid
(Switzer et al., 2003). The algorithm presented by Garside

and Garside (1995) is based only on SST and they report a

RMSE of 1.1 µmol L−1 for their North Atlantic dataset. Ap-
plying their equation to our dataset leads to an overestimation

of 1.4±2.9 µmol L−1 (RMSE). The algorithm used in this

study estimates nitrate with an uncertainty of 1.4 µmol L−1,
both for the reproduction of the training dataset itself and

for the independent dataset from NOC. This gives confi-

dence in the presented equation. However, here we present

one simple algorithm for a whole region that is easy to use

and the desired input data (MLD, SST) can be accessed eas-

ily. As an example we calculated the annual new produc-

tion for 2004 at PAP station and compared it with the cal-

culations from Körtzinger et al. (2008). Using the same

MLD and C/N ratio as Körtzinger et al. (2008) we calculated

the new production to be 6.5±2.7mol Cm−2 yr−1 (their re-
sult from measurements was 6.4±1.1mol Cm−2 yr−1). Us-
ing the MLD estimates from Mercator (the same as used

for nitrate estimation) the new production is estimated to be

2.6±1.3mol Cm−2 yr−1. Note, that the difference between
this two calculations is only due to the different MLD esti-

mations. A predictive accuracy of 1.4 µmol L−1 is not better
than the measurements itself but it offers the potential to esti-

mate nitrate with a sufficient accuracy within the whole study

area.

In this study, the SOM predicted nitrate data are not better

than the MLR estimates, despite in the regions that were in-

fluenced by the Labrador current. This is a clear limitaion

of an easy MLR approach, as the MLR was trained with

data from a different biogeographic province and is not pos-

sible to extrapolate the presented equation to differnt regions.

This is the advantage of the SOM as it recognizes the rela-

tionship of the predictors at the specific position. We specu-

late that taking full advantage of the benefits of SOM would

require better data coverage. The basinscale validation of

the MLR and the SOM against a biogeochemical model pro-

duced RMS errors of 2.1 µmol L−1 (SOM) and 2.2 µmol L−1

(MLR) respectively. These errors are considerably larger

than those obtained from the validation against independent

observational data. In particular high nitrate values in win-

ter and spring in the Labrador Current region could not have

been reproduced by our estimation techniques. This clearly

shows the temporal and spatial limitations of the presented

method. The predictive potential of both techniques is mostly
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Fig. 9. (a–c) Average values of wintertime (February, March) MLD, SST and nitrate estimates from MLR at the location of PAP site. Error

bars are standard deviations (1σ ). (d) Seawater pCO2 that is in equilibrium with the atmosphere and corrected for the extra amount of DIC

associated with the extra nitrate.

restricted to interpolation between lines of observations. For

the water masses that could be classified as nearly the same

biogeochemical province the interpolations works well, be-

cause the training dataset contains data from all seasons in

different years. This enabled us to find good estimation re-

sults with an easy MLR approach. An extrapolation to water

masses not or barely covered by the variability range of the

measurements suffers from larger estimation errors. Thus we

can state that an extrapolation in time might work sufficiently

well, but an extrapolation in space will not work, because of

different dependencies (e.g. main nutrient supply in the study

region by convection).

3.3 Implications of nitrate estimation to pCO2

We calculated the increase in pCO2 that should result from

increased nitrate concentration as mentioned above (Fig. 9b):

we assume that the nitrate concentration until 2005 consti-

tutes a baseline and that the associated dissolved inorganic

carbon (DIC) supply will result in pCO2 values that are in

equilibrium with the atmosphere. We found that the in-

creased nitrate and the associated increased DIC (calculated

from C/N ratio of 7.2, Körtzinger et al., 2001) will result in

pCO2 values that are increasing faster than in the atmosphere

(Fig. 9d). Both rates of pCO2 increase are within the range of

previous observations (Corbière et al., 2007; Takahashi et al.,

2009, and references herein) and we speculate that the ob-

served changes in rates of pCO2 increase may be due to the

variable winter MLD and, thus, the nitrate supply.

As mentioned above a lot of effort is being made to predict

seawater pCO2 in the North Atlantic Ocean very precisely

using remotely sensed data. One important driving force of

the pCO2 is the SST due to the thermodynamic effect, that

is well known (e.g. Takahashi et al., 1993). But the pCO2 is

also affected by high biological activity (Watson et al., 1991;

Lüger et al., 2004; Körtzinger et al., 2008) especially in the

temperate North Atlantic which is hard to assess by remote

sensing (Ono et al., 2004; Lüger et al., 2008, and references

herein) as satellite chlorophyll data proved to be rather use-

less as a predictor in their study. As the biological production

in the world oceans follows a nearly constant stoichiome-

try (Redfield et al., 1963) it is easy to calculate the change

in DIC from a known nitrate change and subsequently the

effect on pCO2 can be calculated. Following the MLR ap-

proach of other studies but substituting satellite chlorophyll

with calculated nitrate using the algorithm presented above

has the potential to obtain better pCO2 estimates. A residual

error of 1.4 µmol L−1 in nitrate would still translate, however,
into a pCO2 error of ≥18 µatm what is comparable to the

RMSE of the parameterization used by Corbière et al. (2007)

(17.4 µatm). One could argue in favour of using the MLD

and SST twice (first for the nitrate estimation and second for

the pCO2 estimation) as the SST dependence of pCO2 is dif-

ferent from the dependence of nitrate.

This hypothesis has to be tested in future work and also the

ongoing research onboard VOS lines will produce more ni-

trate data that could support and/or improve the presented al-

gorithm and especially the SOM approach will become more

important with a larger dataset.
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Lefèvre, N., Watson, A. J., and Watson, A. R.: A comparison of

multiple regression and neural network techniques for mapping

in situ pCO2 data, Tellus, 57B, 375–384, 2005.

Longhurst, A. R.: Ecological geography of the sea, Academic Press,

Boston, 2nd edn., 2007.

Lorbacher, K., Dommenget, D., Niiler, P., and Köhl, A.: Ocean
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