Author's Accepted Manuscript

Massively parallel forward modeling of scalar and tensor gravimetry data

M. Moorkamp, M. Jegen, A. Roberts, R. Hobbs

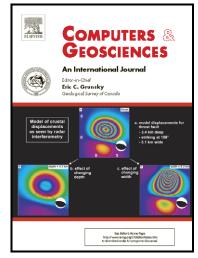
PII: S0098-3004(10)00057-9

DOI: doi:10.1016/j.cageo.2009.09.018

Reference: CAGEO 2305

To appear in: Computers & Geosciences

Received date: 16 June 2009
Revised date: 2 September 2009
Accepted date: 4 September 2009



www.elsevier.com/locate/cageo

Cite this article as: M. Moorkamp, M. Jegen, A. Roberts and R. Hobbs, Massively parallel forward modeling of scalar and tensor gravimetry data, *Computers & Geosciences*, doi:10.1016/j.cageo.2009.09.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Massively parallel forward modeling of scalar and tensor gravimetry data[☆]

M. Moorkamp*,a, M. Jegena, A. Robertsb, R. Hobbsb

^aIFM-GEOMAR, Wischhofstrasse 1-3, 24148 Kiel, Germany ^bUniversity of Durham, Department of Earth Sciences, South Road, Durham DH1 3LE, IIK

Abstract

We present an approach to calculate scalar and tensor gravity utilizing the massively parallel architecture of consumer graphics cards. Our parametrization is based on rectilinear blocks with constant density within each blocks. This type of parametrization is well suited for inversion of gravity data or joint inversion with other datasets, but requires the calculation of a large number of model blocks for complex geometries. For models exceeding 10,000 cells we achieve an acceleration of a factor of 40 for scalar data and 30 for tensor data compared to a single thread on the CPU. This significant acceleration allows fast computation of large models exceeding 10⁶ model parameters and thousands of measurement sites.

Key words: gravity modeling, cuda, parallel computing

 $Email\ address: \verb|mmoorkamp@ifm-geomar.de| (M.\ Moorkamp)$

 $^{^{\}mbox{$^{\circ}$}} \mbox{Code}$ available from server at http://www.iamg.org/CGE ditor/index.htm

^{*}Corresponding author

1 1. Introduction

2	Driven by the computer games industry graphics cards (GPUs) have
3	evolved into powerful computing devices that are geared towards a large
4	number of simultaneous calculations and high memory bandwidth (e.g. Ryoo
5	et al., 2008). In an attempt to broaden the scope of their products, the two
6	main consumer graphics cards manufacturers, Nvidia and AMD, have re-
7	leased programming interfaces for general purpose calculations to their cards.
8	So far massively parallel architectures were limited to specialized and costly
9	hardware. With these developments such an architecture becomes available
10	at low prices and makes the development of massively parallel algorithms
11	attractive.
12	The success of solving a numerical problem on a massively parallel archi-
13	tecture depends heavily on the anatomy of the algorithm. If the problem can
14	be split into independent parts that can be solved without having to transfer
15	information, parallelization is easy and we can expect good performance. If
16	conversely results have to be distributed globally during the calculation, par-
17	allelization becomes difficult and special care has to be taken to reduce the
18	amount of synchronization between the parallel threads of the program. The
19	challenge for GPU based computations is that the number of threads has to
20	be on the order of 10,000 or more to utilize the full computing power of the
21	architecture (Nickolls et al., 2008; Ryoo et al., 2008; Jeong and Whitaker,
22	2008; Komatitsch et al., 2009).
23	Modeling gravitational acceleration and its spatial derivatives is a com-
24	mon tool in geophysics to test models of the density distribution within the
25	subsurface. Often tectonic information or seismic models are used to de-

26	fine broad geological structures with a common density and these are then
27	parametrized as polygonal bodies within the numerical modeling scheme (e.g.
28	Götze and Lahmeyer, 1988). This type of approach has the advantage that
29	the number of bodies is kept low even for complex models which makes it easy
30	for the user to construct such a model and reduces the number of function
31	evaluations.
32	Our forward modeling approach is geared towards usage within a joint
33	inversion algorithm that combines gravity, seismic and magnetotelluric data
34	(Heincke et al., 2006) and therefore we parametrize our model in terms of
35	rectilinear blocks (Hobbs and Trinks, 2005). This type of setup is also of-
36	ten used for inversion of gravity data alone (e.g. Li and Oldenburg, 1998;
37	Portniaguine and Zhdanov, 1999; Nagihara and Hall, 2001; Chasseriau and
38	Chouteau, 2003) and has the advantage that the equations for scalar and
39	tensor gravimetry are particularly simple, but requires the calculation of the
40	effect of a large number of blocks, as complex geometries have to be con-
41	structed from many small blocks. On a platform with no or only a low
42	degree of parallelism this leads to increased computational times compared
43	to the polygonal parametrization. However, the calculation of the effect of
44	many rectilinear block can be performed effectively on a massively parallel
45	architecture to compensate for the higher computational cost. This cost be-
46	comes particularly relevant when we have to calculate several large models
47	for which we cannot store the sensitivities in main memory or even on disk,
48	for example within a non-linear inversion.
49	Although gravity forward modeling is generally fast compared to other
50	methods and we restrict ourselves here to Nvidia's CUDA interface the con-

- 51 clusions and strategies for this relatively simple problem can be applied to
- 52 other problems and other massively parallel architectures. Before we describe
- 53 the details of our implementation we will discuss the basic equations of the
- 54 gravimetry problem for rectilinear blocks. We will then show the performance
- 55 of our approach for a number of scenarios and discuss the implications for
- 56 forward modeling and inversion of gravimetric data.

57 2. Basic equations

The two quantities that are mainly used in gravimetry surveys, are the vertical gravitational acceleration U_z , i.e. the vertical derivative of the gravitational potential U and the gravitational tensor Γ , i.e. the tensor of second spatial derivatives,

$$\Gamma = \begin{pmatrix} U_{xx} & U_{xy} & U_{xz} \\ U_{yx} & U_{yy} & U_{yz} \\ U_{zx} & U_{zy} & U_{zz} \end{pmatrix}. \tag{1}$$

With the nomenclature shown in Figure 1 the equation for the effect of a single prism of density ρ on the vertical gravitational acceleration U_z is (Li and Chouteau, 1998)

$$U_z = -\gamma \rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk} \left(x_i \ln(y_j + r_{ijk}) + y_j \ln(x_i + r_{ijk}) + z_k \arctan \frac{z_k r_{ijk}}{x_i y_j} \right),$$
(2)

and for two elements of the gravimetry tensor it is

$$U_{xx} = \gamma \rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk} \arctan \frac{y_{j} z_{k}}{x_{i} r_{ijk}},$$
 (3)

$$U_{xy} = -\gamma \rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk} \ln(z_k + r_{ijk}), \tag{4}$$

where

$$x_i = x - \xi_i$$
 $y_j = y - \eta_j$ $z_k = z - \zeta_k$
 $r_{ijk} = \sqrt{x_i^2 + y_j^2 + z_k^2}$
 $\mu_{ijk} = (-1)^i (-1)^j (-1)^k$.

We can calculate all other elements of the gravimetry tensor by permutation of the coordinate axes (e.g. Li and Chouteau, 1998; Nagy et al., 2000), in addition the tensor is symmetric so that we only have to calculate 6 instead of all 9 tensor elements. Theoretically, we even only have to calculate 5 elements, as the diagonal terms of the tensor are related by Poisson's equation

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = -4\pi\gamma\rho. \tag{5}$$

- 58 However, we calculate all three diagonal elements independently as this gives
- 59 us an indication of the numerical precision of the results.

Scalar and tensor gravity calculation are well known linear problems and therefore in both cases a term that is purely determined by the geometry of the cell is multiplied by the density of the cell (e.g. Nagy et al., 2000). Also, the effect of several prisms is simply the sum of the contributions of a single cell. We can therefore write the forward calculation as a vector-matrix multiplication between the model vector of density values \mathbf{m} and the geometric sensitivities G

$$\mathbf{d} = G\mathbf{m}.\tag{6}$$

- Here each row of G corresponds to one observed quantity, i.e. a measurement
- 61 of the vertical acceleration or an element of the gravimetric tensor. The
- 62 resulting data vector **d** contains the data resulting from the model. We

- 63 therefore have two parts in the calculation of the forward problem, 1) the
- 64 calculation of the elements of G and 2) the evaluation of the matrix vector
- 65 product.

66

3. Implementation

- 67 Before we describe the details of our implementation we have to clarify the
- 68 standard nomenclature for the CUDA interface and briefly explain the archi-
- 69 tecture. A function that can be executed on the GPU is called a kernel and is
- 70 described by the extended C-syntax kernelname <<< dimGrid, dimBlock>>> (Parameters).
- 71 Here dimGrid and dimBlock are variables that describe the number of inde-
- 72 pendent thread blocks in the computing grid and the number of threads in
- 73 each block, respectively (see Figure 2). The number of threads in a single
- 74 block is determined by the specifications of the GPU and is typically between
- 75 64 and 512 to optimize memory access by the hardware (nyidia, 2009). In
- 76 principle different threads within a block can share information, but we will
- 77 not use this feature in our implementation. The size of the grid depends on
- 78 the size of the problem, in our case the number of model parameters M, and
- 79 each block can be computed independently and in any order. During the par-
- 80 allel execution of the kernel the implementation determines the sub-problem
- 81 to work on from the two variables blockIdx and blockDim. The values of
- 82 these variables is set by the GPU depending on the current block index and
- 83 thread index for the calculation. In principle this index can have several
- 84 dimensions, we only use the first dimension blockIdx.x and blockDim.x,
- 85 respectively.
- As we can calculate each element of the sensitivity matrix independently

```
87
     and with relatively few input parameters, this part can be performed very
88
     efficiently. We parallelize over the number of grid cells M, i.e. a single
 89
     row of the matrix G. In principle, it would be possible to also parallelize
90
     over the number of measurements N to obtain N * M independent threads.
91
     However, for large models, for which the parallelization makes most sense, M
92
     already exceeds one million or more and therefore we can utilize the threading
     capabilities of all currently available GPUs. By only parallelizing over the
93
94
     grid cells, we avoid additional administrative overhead and also avoid having
95
     to store the full sensitivity matrix if we do not need it, instead we only have
     to store a single row at a time. The following listing shows the core algorithm
96
97
     using NVidia's CUDA API.
     __global__ void CalcScalarMeas(const double x_meas, const double y_meas,
98
          const double z_meas, const double *XCoord, const double *YCoord,
99
          const double *ZCoord, const double *XSizes, const double *YSizes,
100
101
          const double *ZSizes, const int nx, const int ny, const int nz,
102
          double *Grow)
103
     //calculate memory offset from execution parameters
104
     const unsigned int offset = blockIdx.x * blockDim.x + threadIdx.x;
105
106
     int xindex, yindex, zindex;
107
     //if the offset is within the model size
108
     if (offset < nx * ny * nz)
      {
109
110
         //calculate the coordinate indices for all three directions
111
         OffsetToIndex(offset, ny, nz, xindex, yindex, zindex);
```

```
112
         //calculate and assign the geometric term to the
113
         //row of the sensitivity matrix
114
         Grow[offset] = CalcGravBoxTerm(x_meas, y_meas, z_meas,
115
             XCoord[xindex], YCoord[yindex], ZCoord[zindex], XSizes[xindex],
116
             YSizes[yindex], ZSizes[zindex]);
117
      }
118
119
         We generate the storage offset for the results within the current row of
     the sensitivity matrix from the built-in variables blockId.x, blockDim.x and
120
121
     threadId.x. As mentioned above, the values of these variables are set by the
122
     hardware for each executed thread. Therefore each offset is unique within one
123
     calculation of the sensitivities. The optimum number of blocks blockDim.x
124
     depends on the register use and the ability to load data from global memory
125
     to local memory in a coalesced fashion. The CUDA programming guide
126
     (nvidia, 2009) recommends a minimum number of 64 blocks or a multiple
127
     of this number. We will investigate the impact of the block size in the
128
     performance section. Depending on the block size and the model size, we
     might have some extra threads in the last block for which we do not need to
129
     perform any calculations. We therefore have to check whether the offset is
130
131
     smaller than the dimension of the model nx*ny*nz.
132
         If the current thread is active, we calculate the indices of the current
     cell in x-direction, y-direction and z-direction, respectively, from the offset
133
     and the total size of the model in y-direction and z-direction. The function
134
135
     CalcGravBoxTerm is a straightforward implementation of the geometric term
     in Equation 2 and takes the three components of the measurement position,
136
```

137	the three coordinates of the upper left front corner of the current cell and
138	the sizes of the cell in the three coordinate directions as arguments. After
139	the API has executed the above code we have obtained a single row of the
140	sensitivity matrix.
141	The further computational strategy depends on the context in which the
142	calculation is performed. For pure forward modeling the most efficient ap-
143	proach is to perform a scalar multiplication between the current row of the
144	sensitivity matrix and the vector of densities on the GPU to obtain the cur-
145	rent datum and then discard the sensitivity information. In this case we min-
146	imize both the storage requirements and the number of transfers between the
147	memory of the GPU and the main memory. In an inversion context however
148	it is beneficial to store the sensitivity matrix, if possible, for two reasons.
149	First, as long as the geometry does not change we can calculate the data
150	for models with varying density distributions by a matrix-vector product as
151	shown in Equation 6. We will show the acceleration we can achieve with this
152	below. Second, we can use the sensitivity matrix to perform Gauss-Newton
153	type inversion. We therefore always transfer the current row of the sensitiv-
154	ity matrix from the GPU to main memory, then perform the scalar product
155	on the CPU and let the main application decide whether this row should be
156	stored for later use or discarded. In the performance section we will assess
157	the cost of the additional transfers.
158	The implementation for the gravimetric tensor is similar to the scalar
159	implementation. We only have to replace the calculation of the geometric
160	term with the appropriate mathematical expressions and preserve the 6 inde-
161	pendent rows of the sensitivity matrix when copying from the GPU to main

162 memory.

163

4. Performance

164	In this section we demonstrate the performance gain we can achieve with
165	our GPU based implementation. All tests were run on a Intel Q6600 with
166	2.4GHz, 4GB of main memory and a NVidia GTX260 graphics card which
167	has 192 processor cores and 896 MB of onboard memory with a bandwidth
168	of 111.9 GB/s. This is the cheapest graphics card that can handle double
169	precision computations that we use throughout the comparison and is readily
170	available in standard consumer PCs.
171	We compiled the main code with the GNU compiler collection version
172	4.3.3 under Ubuntu $09/04$ using the "-O3" optimization flag and the GNU
173	openmp implementation. For the CUDA code we used NVidia's nvcc in
174	Version 2.1 with the driver version 180.44. In all cases we average over
175	5 independent runs to obtain the calculation time. In each run we use a
176	different density model where each cell of the model is randomly assigned a
177	density between $0.1-3.0~{ m g/cm^3}$ and the cell sizes randomly vary between 1
178	and 11 km.
179	First, we examine the impact of the execution block size on the perfor-
180	mance. For three different model sizes we vary the number of threads per
181	execution block between 64 and 256. In Figure 3 we plot the time relative to
182	the fastest run for each model size in order to make the results for the three
183	model sizes comparable. For the chosen model and block sizes we observe
184	that the performance varies by only 17% between the fastest and the slowest
185	configuration. Depending on the model size 64, 128 or 256 threads per block

186	result in the highest performance. Between these three configurations the
187	maximum difference in performance is only 6%. We therefore choose a block
188	size of 128 for all subsequent experiments and do not attempt to optimize
189	this value.
190	Figure 4 shows the computation time for varying model sizes between 8
191	and 1 million model cells and 30 stations for computation of scalar gravity
192	data on one CPU core, 4 CPU cores and the graphics card, respectively. To
193	illustrate the benefits of storing the sensitivity matrix for later computations
194	we also show the time it takes to evaluate the matrix vector product using
195	the ATLAS linear algebra library (Whaley et al., 2001).
196	As expected, for a single core of the CPU the time increases linearly with
197	model size. There is very little overhead to the computation and profiling
198	shows that most time is spent evaluating the trigonometric and natural loga-
199	rithm functions in Equation 2. When using all 4 cores of the CPU we observe
200	that for models with less than 1,000 model cells there is some administrative
201	overhead associated with the parallelization. For larger models, however, we
202	achieve the same linear increase with model size. For these large models
203	the acceleration compared to a single core is close to the theoretical maxi-
204	mum of a factor of 4. This demonstrates that the problem can be efficiently
205	parallelized for multi-core architectures.
206	The curve for the GPU based computations shows some interesting be-
207	havior. For models with less than 100 cells the computation time is higher
208	than for both CPU based calculations. This demonstrates the overhead asso-
209	ciated with initializing the GPU and transferring data between main memory
210	and the memory of the graphics card. Furthermore, for less than 2,000 simul

211	taneous threads the calculation time is independent of model size illustrating $\overline{}$
212	the massively parallel architecture. For fewer than a few thousand model pa-
213	rameters we do not utilize all available computing units on the card. For
214	more than $10,000$ parameters we again achieve a linear dependency of com-
215	putation time on the model size. Within the linear domain the acceleration
216	compared to a single core of the CPU is approximately a factor of 40. This is
217	a significant increase in performance that allows to calculate the response of
218	large models within a a few seconds. In our case the number of measurement
219	sites is relatively low and therefore even the calculation time of 70 s at 10^6
220	model parameters for the single CPU core is not problematic, for large sur-
221	veys with hundreds of sites however the acceleration provided by the GPU
222	marks an important step.
223	Our performance comparison also shows the time for calculations with
224	pre-computed sensitivities as it could be done within a non-linear inversion,
225	e.g. when combining gravity with other data (Heincke et al., 2006). Given
226	enough RAM we only have to perform the full computation in the first it-
227	eration and can then benefit from the accelerated evaluation with the atlas
228	library. In this case the acceleration factor is $1,000$ for large models. This
229	makes the calculation of the model response essentially instantaneous, but
230	requires large amounts of memory. The storage of the sensitivity matrix in
231	double precision requires $8 \times N \times M$ bytes which corresponds to about 240 MB
232	for our largest test case, but exceeds the memory of current computers for
233	larger models or more measurement sites.
234	The graph for the full tensor calculation in Figure 5 shows the same
235	general behavior as for the scalar data. Although we now calculate 6 elements

236	of the tensor, the calculation time only increases by a factor of two compared
237	to the scalar data. The reason for this is the simpler structure of the equations
238	for the elements of the tensor. This result also shows that the calculations on
239	the CPUs are essentially dominated by the evaluation of the mathematical
240	functions and not by memory transfers. As before we observe a nearly linear
241	increase of the calculation time with model size for the calculations with
242	one processor and, apart from some overhead for small models, also for four
243	processors.
244	The transition from constant calculation time to linear increase for the
245	GPU calculation again occurs at a model size of 3,000 parameters. This is
246	because we calculate the 6 elements of the tensor in strictly serial order. The
247	structure of the calculation in terms of parallelization is therefore the same
248	as for the scalar case. The acceleration through the GPU for the tensor case
249	is a factor of 30 compared to 1 processor of the CPU. Due to the simpler
250	structure of the equations and the larger amount of data we have to transfer,
251	the acceleration is not quite as high in this case as for the scalar case, but
252	still significant.
253	As the FTG calculations require the most transfers of sensitivity infor-
254	mation between the GPU and general memory, we use these calculations to
255	assess the cost of the memory transfers. For each independent element of the
256	gravimetric tensor, we transfer a row of the sensitivity matrix from the GPU
257	to the CPU. Profiling shows that for models with 10^6 parameters the code
258	only spends 1% of its time for these memory transfers and this behavior is
259	therefore not critical for the performance.
260	Finally, we examine the numerical precision of the results. Figure 6 shows

261	a histogram of the relative difference between the results from the CPU and
262	the GPU for FTG calculations with 5 random models with 30 sites each. The
263	histogram shows a clear peak around zero with most values concentrated be-
264	tween $-5 \cdot 10^{-13}$ and $5 \cdot 10^{-13}$, the minimum and maximum relative difference
265	are $-5 \cdot 10^{-10}$ and $1 \cdot 10^{-10}$, respectively. This shows that for practical pur-
266	poses the results are identical. Also the trace of the tensor agrees with the
267	theoretical value within numerical precision.
268	We also examine the possibility of performing the calculations in single
269	precision on the GPU. Until recently GPUs were only capable of single pre-
270	cision calculations and their performance is significantly higher for this type
271	of calculations. Compared to the double precision calculations we observe
272	an acceleration factor of roughly 4, more than 100 times faster than calcu-
273	lations on the CPU. However, the numerical precision is problematic. When
274	comparing the results to the double precision calculations in most cases the
275	relative difference stays below $1\cdot 10^{-3}$, a satisfactory value for practical pur-
276	poses. However, more than 10% of the results show a relative difference of 0.1
277	or more, most likely due to accumulated rounding errors (Li and Chouteau,
278	1998). Such a difference impacts on the result of an inversion or the inter-
279	pretation of a forward model and thus is not acceptable for reliable forward
280	modeling.

281 5. Conclusions

282

283

284

The calculation of the scalar and tensorial forward response of large density models can be efficiently parallelized and accelerated by performing the calculation on a standard consumer GPU. Our tests show that it is important

285 perform the calculations with double precision to obtain reliable results. In 286 this case we achieve accelerations of a factor of 40 for scalar data and a factor 287 of 30 for tensorial data with more than 3,000 model parameters, respectively. 288 For the tested cases the number of threads per execution block has only a 289 minor impact on the performance. 290 This is a significant improvement, particularly when considering the relatively low cost of these graphics cards. Our approach allows to quickly 291 292 calculate the response for different density distributions as required, for ex-293 ample, in a joint inversion without storing sensitivity information. Although 294 utilizing the sensitivity information accelerates the calculation further, even 295 modern computers cannot store the sensitivity matrix for large models. Fur-296 thermore, even then we have to calculate the sensitivities once which can be 297 performed using the GPU based algorithm. 298

6. Acknowledgments

- We thank Colin G. Farquharson and an anonymous reviewer for con-299
- 300 structive comments on the manuscript. This work was funded by Chevron,
- ExxonMobil, Nexen, RWE Dea, Shell, Statoil and Wintershall within the 301
- JIBA consortium. 302

References 303

- 304 Chasseriau, P., Chouteau, M., 2003. 3D gravity inversion using a model of
- 305 parameter covariance. Journal of Applied Geophysics 52, 59–74.
- Götze, H.-J., Lahmeyer, B., 1988. Application of three-dimensional interac-306
- 307 tive modeling in gravity and magnetics. Geophysics 53, 1096–1108.

- 308 Heincke, B., Jegen, M., Hobbs, R., 2006. Joint inversion of mt, gravity and
- 309 seismic data applied to sub-basalt imaging. SEG Technical Program Ex-
- 310 panded Abstracts 25 (1), 784–789.
- 311 Hobbs, R., Trinks, I., 2005. Gravity modelling based on small cells. In: Pro-
- 312 ceedings of 67th EAGE (European Association of Geoscientists and Engi-
- neers) Conference and Exhibition. Madrid, Spain, p. 347.
- 314 Jeong, W.-K., Whitaker, R. T., 2008. A fast iterative method for eikonal
- equations. SIAM Journal on Scientific Computing 30 (5), 2512–2534.
- 316 Komatitsch, D., Michéa, D., Erlebacher, G., 2009. Porting a high-order finite-
- 317 element earthquake modeling application to nvidia graphics cards using
- 318 cuda. Journal of Parallel and Distributed Computing 69 (5), 451 460.
- 319 Li, X., Chouteau, M., 1998. Three-dimensional gravity modeling in all space.
- 320 Surveys in Geophysics 19, 339–368.
- 321 Li, Y., Oldenburg, D. W., 1998. 3-D inversion of gravity data. Geophysics
- 322 63, 109–119.
- 323 Nagihara, S., Hall, S. A., 2001. Three-dimensional gravity inversion using
- 324 simulated annealing: Constraints on the diapiric roots of allochthonous
- 325 salt structures. Geophysics 66, 1438–1449.
- 326 Nagy, D., Papp, G., Benedek, J., 2000. The gravitational potential and its
- derivatives for the prism. Journal of Geodesy 74, 552–560.
- 328 Nickolls, J., Buck, I., Garland, M., Skadron, K., 2008. Scalable parallel pro-
- 329 gramming with cuda. Queue 6 (2), 40–53.

330 nvidia, 2009. Nvidia CUDA programming guide, Version 2.1. URL http://www.nvidia.com/cuda, [accessed 1 December 2009] 331 Portniaguine, O., Zhdanov, M. S., 1999. Focusing geophysical inversion im-332 333 ages. Geophysics 64, 874–887. Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., Hwu, 334 W., 2008. Optimization principles and application performance evaluation 335 of a multithreaded gpu using cuda. In: Proceedings of the 13th ACM SIG-336 PLAN Symposium on Principles and Practice of Parallel Programming. 337 338 Salt Lake City, UT, pp. 73–82. 339 Whaley, C. R., Petitet, A., Dongarra, J. J., 2001. Automated empirical optimization of software and the ATLAS project. Parallel Computing 27 (1-2), 340

CCelotte

341

3-35.

Figure 1: Nomenclature and parameterization for gravity forward problem. Position of the measurement is described by the coordinate triple (x, y, z). Model is divided into rectilinear blocks of constant density ρ , for clarity we only show a single block. Coordinates of corners of the block can be completely described by two coordinate triples (ξ_1, η_1, ζ_1) and (ξ_2, η_2, ζ_2) for opposing corners of the block.

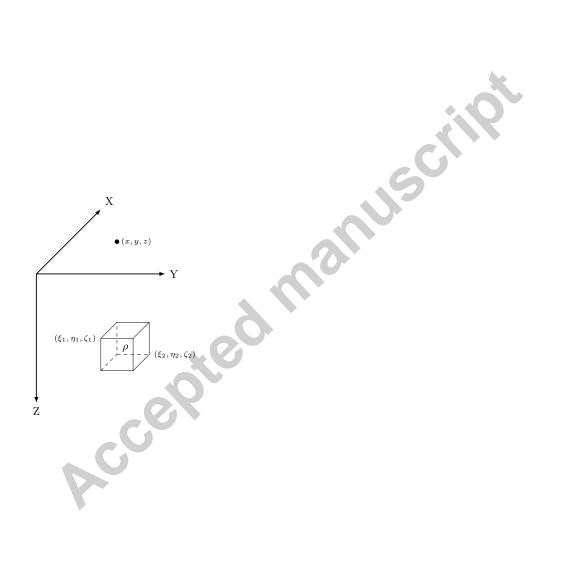
Figure 2: Overview of CUDA execution model and mapping of sensitivities. Execution grid consists of independent blocks that can be executed in any order. In turn each block consists of a number of threads. Each element of the sensitivity vector for the current measurement is mapped onto a different thread.

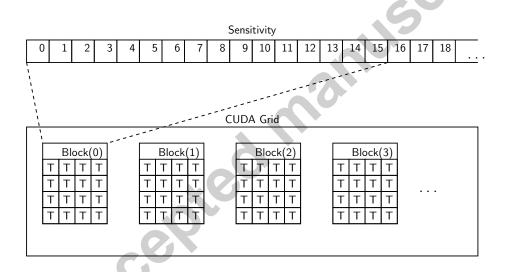
Figure 3: Dependency of execution time on number of threads per block. For each block size we measure execution time of models with $40 \times 40 \times 40$, $60 \times 60 \times 60$ and $80 \times 80 \times 80$ model cells, respectively. To make results comparable we divide by the time for the fastest execution for each model size. Execution time is relatively similar for all block sizes but shows minima at 64, 128, 192 and 256, respectively.

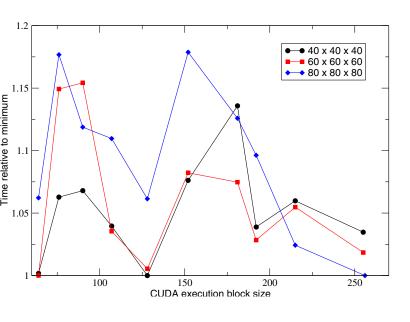
Figure 4: Calculation times for different size models for scalar gravity data for a single CPU thread (Q6600), 4 CPU threads and GPU (GTX260). For comparison we also show the time to evaluate the matrix vector product with the ATLAS library when the sensitivity matrix has been calculated.

Figure 5: Calculation times for different size models for FTG data for a single CPU thread (Q6600), 4 CPU threads and GPU (GTX260).

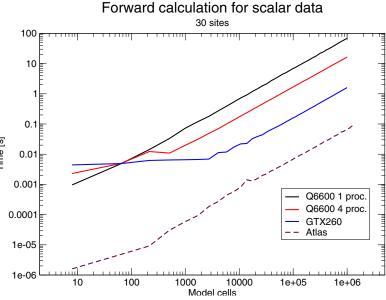
Figure 6: Relative difference between FTG calculations performed on CPU and on GPU in double precision, respectively. Maximum relative deviation between results is $-5 \cdot 10^{-10}$.







for scalar data



R THE Forward calculation for FTG data

