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Abstract

We present an approach to calculate scalar and tensor gravity utilizing the

massively parallel architecture of consumer graphics cards. Our parametriza-

tion is based on rectilinear blocks with constant density within each blocks.

This type of parametrization is well suited for inversion of gravity data or

joint inversion with other datasets, but requires the calculation of a large

number of model blocks for complex geometries. For models exceeding 10,000

cells we achieve an acceleration of a factor of 40 for scalar data and 30 for ten-

sor data compared to a single thread on the CPU. This significant accelera-

tion allows fast computation of large models exceeding 106 model parameters

and thousands of measurement sites.
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1. Introduction1

Driven by the computer games industry graphics cards (GPUs) have2

evolved into powerful computing devices that are geared towards a large3

number of simultaneous calculations and high memory bandwidth (e.g. Ryoo4

et al., 2008). In an attempt to broaden the scope of their products, the two5

main consumer graphics cards manufacturers, Nvidia and AMD, have re-6

leased programming interfaces for general purpose calculations to their cards.7

So far massively parallel architectures were limited to specialized and costly8

hardware. With these developments such an architecture becomes available9

at low prices and makes the development of massively parallel algorithms10

attractive.11

The success of solving a numerical problem on a massively parallel archi-12

tecture depends heavily on the anatomy of the algorithm. If the problem can13

be split into independent parts that can be solved without having to transfer14

information, parallelization is easy and we can expect good performance. If15

conversely results have to be distributed globally during the calculation, par-16

allelization becomes difficult and special care has to be taken to reduce the17

amount of synchronization between the parallel threads of the program. The18

challenge for GPU based computations is that the number of threads has to19

be on the order of 10,000 or more to utilize the full computing power of the20

architecture (Nickolls et al., 2008; Ryoo et al., 2008; Jeong and Whitaker,21

2008; Komatitsch et al., 2009).22

Modeling gravitational acceleration and its spatial derivatives is a com-23

mon tool in geophysics to test models of the density distribution within the24

subsurface. Often tectonic information or seismic models are used to de-25
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fine broad geological structures with a common density and these are then26

parametrized as polygonal bodies within the numerical modeling scheme (e.g.27

Götze and Lahmeyer, 1988). This type of approach has the advantage that28

the number of bodies is kept low even for complex models which makes it easy29

for the user to construct such a model and reduces the number of function30

evaluations.31

Our forward modeling approach is geared towards usage within a joint32

inversion algorithm that combines gravity, seismic and magnetotelluric data33

(Heincke et al., 2006) and therefore we parametrize our model in terms of34

rectilinear blocks (Hobbs and Trinks, 2005). This type of setup is also of-35

ten used for inversion of gravity data alone (e.g. Li and Oldenburg, 1998;36

Portniaguine and Zhdanov, 1999; Nagihara and Hall, 2001; Chasseriau and37

Chouteau, 2003) and has the advantage that the equations for scalar and38

tensor gravimetry are particularly simple, but requires the calculation of the39

effect of a large number of blocks, as complex geometries have to be con-40

structed from many small blocks. On a platform with no or only a low41

degree of parallelism this leads to increased computational times compared42

to the polygonal parametrization. However, the calculation of the effect of43

many rectilinear block can be performed effectively on a massively parallel44

architecture to compensate for the higher computational cost. This cost be-45

comes particularly relevant when we have to calculate several large models46

for which we cannot store the sensitivities in main memory or even on disk,47

for example within a non-linear inversion.48

Although gravity forward modeling is generally fast compared to other49

methods and we restrict ourselves here to Nvidia’s CUDA interface the con-50
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clusions and strategies for this relatively simple problem can be applied to51

other problems and other massively parallel architectures. Before we describe52

the details of our implementation we will discuss the basic equations of the53

gravimetry problem for rectilinear blocks. We will then show the performance54

of our approach for a number of scenarios and discuss the implications for55

forward modeling and inversion of gravimetric data.56

2. Basic equations57

The two quantities that are mainly used in gravimetry surveys, are the

vertical gravitational acceleration Uz, i.e. the vertical derivative of the grav-

itational potential U and the gravitational tensor Γ, i.e. the tensor of second

spatial derivatives,

Γ =

⎛
⎜⎜⎜⎝

Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

⎞
⎟⎟⎟⎠ . (1)

With the nomenclature shown in Figure 1 the equation for the effect of a

single prism of density ρ on the vertical gravitational acceleration Uz is (Li

and Chouteau, 1998)

Uz = −γρ
2∑

i=1

2∑
j=1

2∑
k=1

μijk

(
xi ln(yj + rijk) + yj ln(xi + rijk) + zk arctan

zkrijk

xiyj

)
,

(2)

and for two elements of the gravimetry tensor it is

Uxx = γρ

2∑
i=1

2∑
j=1

2∑
k=1

μijk arctan
yjzk

xirijk
, (3)

Uxy = −γρ

2∑
i=1

2∑
j=1

2∑
k=1

μijk ln(zk + rijk), (4)
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where

xi = x− ξi yj = y − ηj zk = z − ζk

rijk =
√

x2
i + y2

j + z2
k

μijk = (−1)i(−1)j(−1)k.

We can calculate all other elements of the gravimetry tensor by permutation

of the coordinate axes (e.g. Li and Chouteau, 1998; Nagy et al., 2000), in

addition the tensor is symmetric so that we only have to calculate 6 instead

of all 9 tensor elements. Theoretically, we even only have to calculate 5

elements, as the diagonal terms of the tensor are related by Poisson’s equation

∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= −4πγρ. (5)

However, we calculate all three diagonal elements independently as this gives58

us an indication of the numerical precision of the results.59

Scalar and tensor gravity calculation are well known linear problems and

therefore in both cases a term that is purely determined by the geometry

of the cell is multiplied by the density of the cell (e.g. Nagy et al., 2000).

Also, the effect of several prisms is simply the sum of the contributions of

a single cell. We can therefore write the forward calculation as a vector-

matrix multiplication between the model vector of density values m and the

geometric sensitivities G

d = Gm. (6)

Here each row of G corresponds to one observed quantity, i.e. a measurement60

of the vertical acceleration or an element of the gravimetric tensor. The61

resulting data vector d contains the data resulting from the model. We62
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therefore have two parts in the calculation of the forward problem, 1) the63

calculation of the elements of G and 2) the evaluation of the matrix vector64

product.65

3. Implementation66

Before we describe the details of our implementation we have to clarify the67

standard nomenclature for the CUDA interface and briefly explain the archi-68

tecture. A function that can be executed on the GPU is called a kernel and is69

described by the extended C-syntax kernelname<<<dimGrid,dimBlock>>>(Parameters).70

Here dimGrid and dimBlock are variables that describe the number of inde-71

pendent thread blocks in the computing grid and the number of threads in72

each block, respectively (see Figure 2). The number of threads in a single73

block is determined by the specifications of the GPU and is typically between74

64 and 512 to optimize memory access by the hardware (nvidia, 2009). In75

principle different threads within a block can share information, but we will76

not use this feature in our implementation. The size of the grid depends on77

the size of the problem, in our case the number of model parameters M , and78

each block can be computed independently and in any order. During the par-79

allel execution of the kernel the implementation determines the sub-problem80

to work on from the two variables blockIdx and blockDim. The values of81

these variables is set by the GPU depending on the current block index and82

thread index for the calculation. In principle this index can have several83

dimensions, we only use the first dimension blockIdx.x and blockDim.x,84

respectively.85

As we can calculate each element of the sensitivity matrix independently86
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and with relatively few input parameters, this part can be performed very87

efficiently. We parallelize over the number of grid cells M , i.e. a single88

row of the matrix G. In principle, it would be possible to also parallelize89

over the number of measurements N to obtain N ∗M independent threads.90

However, for large models, for which the parallelization makes most sense, M91

already exceeds one million or more and therefore we can utilize the threading92

capabilities of all currently available GPUs. By only parallelizing over the93

grid cells, we avoid additional administrative overhead and also avoid having94

to store the full sensitivity matrix if we do not need it, instead we only have95

to store a single row at a time. The following listing shows the core algorithm96

using NVidia’s CUDA API.97

__global__ void CalcScalarMeas(const double x_meas, const double y_meas,98

const double z_meas, const double *XCoord, const double *YCoord,99

const double *ZCoord, const double *XSizes, const double *YSizes,100

const double *ZSizes, const int nx, const int ny, const int nz,101

double *Grow)102

103

//calculate memory offset from execution parameters104

const unsigned int offset = blockIdx.x * blockDim.x + threadIdx.x;105

int xindex, yindex, zindex;106

//if the offset is within the model size107

if (offset < nx * ny * nz)108

{109

//calculate the coordinate indices for all three directions110

OffsetToIndex(offset, ny, nz, xindex, yindex, zindex);111
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//calculate and assign the geometric term to the112

//row of the sensitivity matrix113

Grow[offset] = CalcGravBoxTerm(x_meas, y_meas, z_meas,114

XCoord[xindex], YCoord[yindex], ZCoord[zindex], XSizes[xindex],115

YSizes[yindex], ZSizes[zindex]);116

117

}118

We generate the storage offset for the results within the current row of119

the sensitivity matrix from the built-in variables blockId.x, blockDim.x and120

threadId.x. As mentioned above, the values of these variables are set by the121

hardware for each executed thread. Therefore each offset is unique within one122

calculation of the sensitivities. The optimum number of blocks blockDim.x123

depends on the register use and the ability to load data from global memory124

to local memory in a coalesced fashion. The CUDA programming guide125

(nvidia, 2009) recommends a minimum number of 64 blocks or a multiple126

of this number. We will investigate the impact of the block size in the127

performance section. Depending on the block size and the model size, we128

might have some extra threads in the last block for which we do not need to129

perform any calculations. We therefore have to check whether the offset is130

smaller than the dimension of the model nx*ny*nz.131

If the current thread is active, we calculate the indices of the current132

cell in x-direction, y-direction and z-direction, respectively, from the offset133

and the total size of the model in y-direction and z-direction. The function134

CalcGravBoxTerm is a straightforward implementation of the geometric term135

in Equation 2 and takes the three components of the measurement position,136
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the three coordinates of the upper left front corner of the current cell and137

the sizes of the cell in the three coordinate directions as arguments. After138

the API has executed the above code we have obtained a single row of the139

sensitivity matrix.140

The further computational strategy depends on the context in which the141

calculation is performed. For pure forward modeling the most efficient ap-142

proach is to perform a scalar multiplication between the current row of the143

sensitivity matrix and the vector of densities on the GPU to obtain the cur-144

rent datum and then discard the sensitivity information. In this case we min-145

imize both the storage requirements and the number of transfers between the146

memory of the GPU and the main memory. In an inversion context however147

it is beneficial to store the sensitivity matrix, if possible, for two reasons.148

First, as long as the geometry does not change we can calculate the data149

for models with varying density distributions by a matrix-vector product as150

shown in Equation 6. We will show the acceleration we can achieve with this151

below. Second, we can use the sensitivity matrix to perform Gauss-Newton152

type inversion. We therefore always transfer the current row of the sensitiv-153

ity matrix from the GPU to main memory, then perform the scalar product154

on the CPU and let the main application decide whether this row should be155

stored for later use or discarded. In the performance section we will assess156

the cost of the additional transfers.157

The implementation for the gravimetric tensor is similar to the scalar158

implementation. We only have to replace the calculation of the geometric159

term with the appropriate mathematical expressions and preserve the 6 inde-160

pendent rows of the sensitivity matrix when copying from the GPU to main161
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memory.162

4. Performance163

In this section we demonstrate the performance gain we can achieve with164

our GPU based implementation. All tests were run on a Intel Q6600 with165

2.4GHz, 4GB of main memory and a NVidia GTX260 graphics card which166

has 192 processor cores and 896 MB of onboard memory with a bandwidth167

of 111.9 GB/s. This is the cheapest graphics card that can handle double168

precision computations that we use throughout the comparison and is readily169

available in standard consumer PCs.170

We compiled the main code with the GNU compiler collection version171

4.3.3 under Ubuntu 09/04 using the “-O3” optimization flag and the GNU172

openmp implementation. For the CUDA code we used NVidia’s nvcc in173

Version 2.1 with the driver version 180.44. In all cases we average over174

5 independent runs to obtain the calculation time. In each run we use a175

different density model where each cell of the model is randomly assigned a176

density between 0.1 – 3.0 g/cm3 and the cell sizes randomly vary between 1177

and 11 km.178

First, we examine the impact of the execution block size on the perfor-179

mance. For three different model sizes we vary the number of threads per180

execution block between 64 and 256. In Figure 3 we plot the time relative to181

the fastest run for each model size in order to make the results for the three182

model sizes comparable. For the chosen model and block sizes we observe183

that the performance varies by only 17% between the fastest and the slowest184

configuration. Depending on the model size 64, 128 or 256 threads per block185
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result in the highest performance. Between these three configurations the186

maximum difference in performance is only 6%. We therefore choose a block187

size of 128 for all subsequent experiments and do not attempt to optimize188

this value.189

Figure 4 shows the computation time for varying model sizes between 8190

and 1 million model cells and 30 stations for computation of scalar gravity191

data on one CPU core, 4 CPU cores and the graphics card, respectively. To192

illustrate the benefits of storing the sensitivity matrix for later computations193

we also show the time it takes to evaluate the matrix vector product using194

the ATLAS linear algebra library (Whaley et al., 2001).195

As expected, for a single core of the CPU the time increases linearly with196

model size. There is very little overhead to the computation and profiling197

shows that most time is spent evaluating the trigonometric and natural loga-198

rithm functions in Equation 2. When using all 4 cores of the CPU we observe199

that for models with less than 1,000 model cells there is some administrative200

overhead associated with the parallelization. For larger models, however, we201

achieve the same linear increase with model size. For these large models202

the acceleration compared to a single core is close to the theoretical maxi-203

mum of a factor of 4. This demonstrates that the problem can be efficiently204

parallelized for multi-core architectures.205

The curve for the GPU based computations shows some interesting be-206

havior. For models with less than 100 cells the computation time is higher207

than for both CPU based calculations. This demonstrates the overhead asso-208

ciated with initializing the GPU and transferring data between main memory209

and the memory of the graphics card. Furthermore, for less than 3,000 simul-210
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taneous threads the calculation time is independent of model size illustrating211

the massively parallel architecture. For fewer than a few thousand model pa-212

rameters we do not utilize all available computing units on the card. For213

more than 10,000 parameters we again achieve a linear dependency of com-214

putation time on the model size. Within the linear domain the acceleration215

compared to a single core of the CPU is approximately a factor of 40. This is216

a significant increase in performance that allows to calculate the response of217

large models within a a few seconds. In our case the number of measurement218

sites is relatively low and therefore even the calculation time of 70 s at 106219

model parameters for the single CPU core is not problematic, for large sur-220

veys with hundreds of sites however the acceleration provided by the GPU221

marks an important step.222

Our performance comparison also shows the time for calculations with223

pre-computed sensitivities as it could be done within a non-linear inversion,224

e.g. when combining gravity with other data (Heincke et al., 2006). Given225

enough RAM we only have to perform the full computation in the first it-226

eration and can then benefit from the accelerated evaluation with the atlas227

library. In this case the acceleration factor is 1,000 for large models. This228

makes the calculation of the model response essentially instantaneous, but229

requires large amounts of memory. The storage of the sensitivity matrix in230

double precision requires 8×N×M bytes which corresponds to about 240 MB231

for our largest test case, but exceeds the memory of current computers for232

larger models or more measurement sites.233

The graph for the full tensor calculation in Figure 5 shows the same234

general behavior as for the scalar data. Although we now calculate 6 elements235
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of the tensor, the calculation time only increases by a factor of two compared236

to the scalar data. The reason for this is the simpler structure of the equations237

for the elements of the tensor. This result also shows that the calculations on238

the CPUs are essentially dominated by the evaluation of the mathematical239

functions and not by memory transfers. As before we observe a nearly linear240

increase of the calculation time with model size for the calculations with241

one processor and, apart from some overhead for small models, also for four242

processors.243

The transition from constant calculation time to linear increase for the244

GPU calculation again occurs at a model size of 3,000 parameters. This is245

because we calculate the 6 elements of the tensor in strictly serial order. The246

structure of the calculation in terms of parallelization is therefore the same247

as for the scalar case. The acceleration through the GPU for the tensor case248

is a factor of 30 compared to 1 processor of the CPU. Due to the simpler249

structure of the equations and the larger amount of data we have to transfer,250

the acceleration is not quite as high in this case as for the scalar case, but251

still significant.252

As the FTG calculations require the most transfers of sensitivity infor-253

mation between the GPU and general memory, we use these calculations to254

assess the cost of the memory transfers. For each independent element of the255

gravimetric tensor, we transfer a row of the sensitivity matrix from the GPU256

to the CPU. Profiling shows that for models with 106 parameters the code257

only spends 1% of its time for these memory transfers and this behavior is258

therefore not critical for the performance.259

Finally, we examine the numerical precision of the results. Figure 6 shows260
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a histogram of the relative difference between the results from the CPU and261

the GPU for FTG calculations with 5 random models with 30 sites each. The262

histogram shows a clear peak around zero with most values concentrated be-263

tween −5 ·10−13 and 5 ·10−13, the minimum and maximum relative difference264

are −5 · 10−10 and 1 · 10−10, respectively. This shows that for practical pur-265

poses the results are identical. Also the trace of the tensor agrees with the266

theoretical value within numerical precision.267

We also examine the possibility of performing the calculations in single268

precision on the GPU. Until recently GPUs were only capable of single pre-269

cision calculations and their performance is significantly higher for this type270

of calculations. Compared to the double precision calculations we observe271

an acceleration factor of roughly 4, more than 100 times faster than calcu-272

lations on the CPU. However, the numerical precision is problematic. When273

comparing the results to the double precision calculations in most cases the274

relative difference stays below 1 · 10−3, a satisfactory value for practical pur-275

poses. However, more than 10% of the results show a relative difference of 0.1276

or more, most likely due to accumulated rounding errors (Li and Chouteau,277

1998). Such a difference impacts on the result of an inversion or the inter-278

pretation of a forward model and thus is not acceptable for reliable forward279

modeling.280

5. Conclusions281

The calculation of the scalar and tensorial forward response of large den-282

sity models can be efficiently parallelized and accelerated by performing the283

calculation on a standard consumer GPU. Our tests show that it is important284
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perform the calculations with double precision to obtain reliable results. In285

this case we achieve accelerations of a factor of 40 for scalar data and a factor286

of 30 for tensorial data with more than 3,000 model parameters, respectively.287

For the tested cases the number of threads per execution block has only a288

minor impact on the performance.289

This is a significant improvement, particularly when considering the rel-290

atively low cost of these graphics cards. Our approach allows to quickly291

calculate the response for different density distributions as required, for ex-292

ample, in a joint inversion without storing sensitivity information. Although293

utilizing the sensitivity information accelerates the calculation further, even294

modern computers cannot store the sensitivity matrix for large models. Fur-295

thermore, even then we have to calculate the sensitivities once which can be296

performed using the GPU based algorithm.297
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Figure 1: Nomenclature and parameterization for gravity forward problem. Position of

the measurement is described by the coordinate triple (x, y, z). Model is divided into

rectilinear blocks of constant density ρ, for clarity we only show a single block. Coordinates

of corners of the block can be completely described by two coordinate triples (ξ1, η1, ζ1)

and (ξ2, η2, ζ2) for opposing corners of the block.

Figure 2: Overview of CUDA execution model and mapping of sensitivities. Execution

grid consists of independent blocks that can be executed in any order. In turn each block

consists of a number of threads. Each element of the sensitivity vector for the current

measurement is mapped onto a different thread.

Figure 3: Dependency of execution time on number of threads per block. For each block

size we measure execution time of models with 40× 40× 40, 60× 60× 60 and 80× 80× 80

model cells, respectively. To make results comparable we divide by the time for the fastest

execution for each model size. Execution time is relatively similar for all block sizes but

shows minima at 64, 128, 192 and 256, respectively.

Figure 4: Calculation times for different size models for scalar gravity data for a single CPU

thread (Q6600), 4 CPU threads and GPU (GTX260). For comparison we also show the

time to evaluate the matrix vector product with the ATLAS library when the sensitivity

matrix has been calculated.

Figure 5: Calculation times for different size models for FTG data for a single CPU thread

(Q6600), 4 CPU threads and GPU (GTX260).

Figure 6: Relative difference between FTG calculations performed on CPU and on GPU in

double precision, respectively. Maximum relative deviation between results is −5 · 10−10.
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