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Abstract

In this thesis a dynamical forecast approach is considered to evaluate the potential
seasonal predictability in the European-Atlantic region with emphasis on the mean winter

climate. Two state-of-the-art seasonal forecast systems are used, namely the Seasonal

Forecast System 2 from the European Centre for Medium Range Weather Forecast

(ECMWF) and a multi-model system developed within the joint European project
DEMETER (Development of a European Multi-Model Ensemble Prediction System for

Seasonal to Interannual Prediction). The predictions are verified with the ERA-40 re-

analysis data.

Seasonal forecasts are probabilistic in nature and hence require verification techniques
based on probabilistic skill measures. Here a multi-category skill score, namely the

ranked probability skill score (RPSS) is applied. The RPSS is sensitive to the shape and

the shift of the predicted probability density distribution. However, the RPSS shows a

negative bias for ensemble systems with small ensemble sizes. It is shown that the

negative bias can be attributed to a discretization and squaring error in the quadratic norm

of the RPSS. In the following two strategies are explored to tackle this flaw. First, it is

shown that the RPSSl=i based on the absolute rather than the squared norm is unbiased.

Nevertheless, it is not strictly proper in a statistical sense. Second, an unbiased and

strictly proper skill score can be defined based on the quadratic norm, along with the

reference forecast reduced to sub-samples of the same size as the forecast ensemble size.

This is denoted as the de-biased ranked probability skill score (RPSSd). Based on a

hypothetical set up comparable to the ECMWF hindcast system (40 members, 15

hindcast years) the RPSSd is used to show, that statistically significant skill scores can

only be found for climate anomalies with a signal-to-noise ratio larger than -0.3.

Furthermore, the seasonal predictability is evaluated using a forecast approach (FA)
based on 2m mean temperature predictions on grid-point scale for the years 1987-2001.

The ECMWF Seasonal Forecast System 2 provides a marked improvement in skill

relative to climatological forecasts over the North-Atlantic Ocean with maximum values

of up to 30 %. Over Europe no significantly positive skill scores are found. The

DEMETER multi-model has higher forecast skills than individual models. Moreover, the

potential predictability is investigated applying a perfect model approach (PMA). Such

approach assumes that the climate system is fully represented by the model physics. The

potential winter predictability over the European continent amounts to approximately

-10%.

The 3r part of the thesis examines the potential seasonal predictability is examined via

the leading mode of the European winter climate variability, namely the North Atlantic

Oscillation (NAO). The PMA shows that the mean winter NAO and the NAO-
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temperature related impact is potentially predictable for lead time 1 month, but with a

gain in skill of only -8 % compared to climatology. Using the FA, the results are quite
different. For the period 1959-2001, the NAO skill score is not statistically significant,
while the skill score is surprisingly large (16 % to 27 % relative to the observed

climatology) for the period 1987-2001. For this period a weak relation between the

strength of the NAO amplitude and the skill score of the NAO is found. This contrasts

with ENSO variability where the amplitude dependent forecast skill is strong.

Finally, the seasonal forecasts are examined from the end user's perspective. A so-called

"Klimagram" is introduced to assess seasonal climate forecasts for particular cities or

regions. A first analysis reveals that the forecast skills can be improved in a relative

sense, looking at spatial and temporal averaged quantities.

Overall, this study suggests a positive potential seasonal predictability in the European-

Atlantic domain in winter. However, the potential benefit is rather small and constitutes a

fraction only, compared to currently possible results in the tropics.
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Zusammenfassung

In dieser Arbeit wird die potentielle saisonale Vorhersagbarkeit des Europäischen-
Atlantischen Winterklimas mit Hilfe dynamischer Vorhersagemethoden untersucht.

Hierfür werden zwei saisonale Vorhersagesysteme benutzt: das saisonale

Vorhersagesystem 2 des Europäischen Zentrum für mittelfristige Wettervorhersage

(EZMW) und das Multi-Model System DEMETER (Development of a European Multi¬

Model Ensemble Prediction System for Seasonal to Interannual Prediction). Die

Vorhersagen werden mit den Beobachtungen aus den ERA40 Re-analysen verifiziert.

Saisonale Vorhersagen sind probabilistischer Natur und benötigen daher

Verifikationstechniken die auf Wahrscheinlichkeitsmaße zurückgreifen. Die Verifikation

in dieser Arbeit basiert auf einem mit mehreren Klassen umfassendes Maß: der

Vorhersagegüte für abgestufte Wahrscheinlichkeiten (Ranked Probability Skill Score,

RPSS). Das RPSS berücksichtigt die Form und Verlagerung der Wahrscheinlichkeits¬

funktion. Das RPSS zeigt jedoch einen negativen Bias für Ensemble-Systeme mit kleiner

Ensemblegröße, der auf ein Diskretisierungs- und Quadrierungsproblem der

quadratischen Norm des RPSS zurückführbar ist. Zwei Strategien werden untersucht, die

dieses Problem angehen. Zum einen wird gezeigt, dass im Gegensatz zur quadratischen

Norm, die absolute Norm keinen Bias aufweist. Es zeigt sich jedoch das dieses Maß im

statistischen Sinne nicht streng genug maßgebend ist. Zum anderen wird ein Maß

definiert, welches auf die quadratische Norm des RPSS zurückgreift, keinen Bias

aufweist und maßgebend ist. Hierbei wird die Referenzvorhersage auf eine

Unterstichprobe, der gleichen Größe wie die Ensemblevorhersagen, reduziert (de-biased
Ranked Probability Skill Score, RPSSd). Mittels einer hypothetischen Konfiguration,

vergleichbar der des ECMWF System 2 (40 Ensemblemitglieder und 15 Vorhersagen),
wird gezeigt, dass statistisch signifikante RPSSd nur dann für Klimaanomalien erreicht

werden können, wenn das Verhältnis zwischen Signal und Rauschanteil ungefähr 0.3 ist.

Die saisonale Vorhersagbarkeit wird zunächst im Vorhersagemodus (FA) für die 2m

Temperatur und den Zeitraum 1987-2001 an jedem Gitterpunkt bewertet. Das EZMW

Vorhersagesystem 2 zeigt über dem Nordatlantischen Ozean eine deutliche Verbesserung

gegenüber klimatologischen Vorhersagen, mit Werten bis zu 30 %. Über Europa können

keine signifikant positive RPSSd gefunden werden. Das DEMETER Multimodell weist

insgesamt eine höhere Vorhersagegüte auf als das Mittel der einzelnen Modelle. Mit

Hilfe eines perfekten Modellansatzes (PMA) wird die potentielle Vorhersagbarkeit
bestimmt. Diese Methode setzt ein Klimasystem voraus, dass vollständig durch die

Modellphysik beschrieben wird. Die potentielle Vorhersagbarkeit des Winterklimas über

dem Europäischen Kontinent erreicht nun etwa 10%.
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Die saisonale Vorhersagbarkeit wird alternativ mit dem dominanten Mode der Euro-

Atlantischen Klimavariabilität, der Nordatlantischen Oszillation (NAO), untersucht. Der

PMA zeigt, dass die Winter gemittelte NAO sowie der NAO bezogene Einfluss auf die

Temperatur potentiell vorhersagbar sind, zumindest für eine Vorlaufzeit von einem

Monat. Der Gewinn gegenüber den klimatologischen Vorhersagen ist jedoch gering und

beträgt lediglich -8 %. Für den FA werden unterschiedlich Resultate erzielt. Für den

Zeitraum 1959-2001 ist die Vorhersagegüte der NAO statistisch nicht signifikant,
während sie für den Zeitraum 1987-2001 überraschenderweise groß ist (16 % bis 27 %

gegenüber der beobachteten Klimatologie). Für diesen Zeitraum wird weiterhin ein

Zusammenhang zwischen der Stärke der NAO Amplitude und der Vorhersagegüte

gefunden. Dieser ist jedoch schwach und steht im Gegensatz zur ENSO Variabilität, bei

der es eine starke Abhängigkeit der Vorhersagegüte von der Amplitude gibt.

Schließlich werden die saisonalen Vorhersagen von der Perspektive des Endverbrauchers

untersucht. Das so genannte Klimagramm wird eingeführt, um saisonale

Klimavorhersagen für bestimmte Städte oder Regionen abzuschätzen. Eine erste Analyse

zeigt, dass die Vorhersagegüte für räumlich und zeitlich gemittelte Größen verbessert

werden kann.

Zusammenfassend zeigt diese Studie eine positive potentielle Vorhersagbarkeit des

Europäischen-Atlantischen Winterklimas. Der potentielle Nutzen ist jedoch gering und

lediglich ein Bruchteil dessen, was in den Tropen erreicht werden kann.
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Chapter 1 :

Seasonal to Interannual Climate Variability

1.1. Motivation

The European summer of 2003 has been one of the most extraordinary of its kind, in the

climatological but also in the socio-economic context. A strong persistent anticyclonic

circulation, only interrupted by a few synoptic frontal disturbances, dominated the

summer months (Grazzini et al. 2003). A warm period in late spring and the subsequently

developed massive heat wave affected the European continent during the entire summer

season. Temperature anomalies were found to exceed the climatological mean by at least

~3°C which corresponds to about five standard deviations (Figure 1-la - Schär et al.

2004). Record-breaking values of sea and land surface temperatures were also observed

in the western Mediterranean Sea and its circumjacent countries (Grazzini et al. 2003,

Grazzini and Viterbo 2003). An extremely dry period with associated high temperature

places the summer heat wave on top of the largest natural catastrophes in 2003, with an

economic damage of approximately 13bn US$ for Europe (MunichRe , 2003).

Preliminary analysis suggests an enhanced mortality with about >20000 attributed deaths

alone in France, Italy and Portugal (Kovats et al. 2004).

The question is whether timely seasonal climate forecasts could have limited the

disastrous effects. The probabilistic summer forecast of the ECMWF Seasonal Forecast

System 2 has predicted a signal one month in advance some what similar to the observed

one. Figure 1-lb shows the probability forecast of summer mean 2m temperature

anomalies above mean. Much of southern and the northwestern Europe were covered by

a significant signal which indicated a 70 % chance for the 2m temperature to be above

normal. Low probabilities over Eastern Europe and the sub-tropical Atlantic were

forecasted indicating colder than normal summer conditions. The forecasts, however,

failed to predict the intense amplitudes (not shown). Only anomalies with a magnitude of

about 1.5°C were predicted in those areas where the heat wave reached its maximum.

Although the system was able to predict the tendency of the anomalies, it failed to point
out the relevance of the event. Moreover, subsequent forecasts initialized in June did not

support the May predictions.

1

TOPICSgeo Annual Review Natural Catastrophes 2003, MunichRe
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Figure 1-1: The observed (left) and predicted (right) summer (June-July-August) 2003.

Shown are the 2m temperature anomalies of the ERA40 Re-Analysis (shadings 1°C) and the

standard deviations (contours la) based on the climatology for the period 1961-1990 (from
Schär et al 2004). The prediction results from the ECMWF Seasonal Forecast System 2

initialised on the 1st May 2003. The model climatology is based on the period from 1987-

2001 (times 40 ensemble members). Shown is the probability of the 2m temperature being
greater than the long-term mean.

The prediction of seasonal climate anomalies has recently become operational at various

meteorological centres. Several validation studies suggest potentially useful information

from seasonal climate forecasts in many parts of the world. In this context it is of special

importance to explore the variability and predictability of the relevant processes. The

strongest signal on seasonal to interannual climate time-scales is given by the natural

climate variation in the tropical-subtropical Pacific, known as EINifio/Southern

Oscillation (ENSO, see also Trenberth et al. 1998, Diaz and Markgraf 2000). For Europe,

however, a direct impact of the equatorial Pacific is supposed to be limited (Fraedrich

1994, Merkel and Latif 2003). Other relevant processes such as the North Atlantic

Oscillation (NAO) have substantial impact on the European seasonal climate.

The aim of this thesis is to explore the climate patterns primarily responsible for the

seasonal predictability in the European-Atlantic region, using state-of-the art coupled

ocean-atmosphere general circulation models (CGCM). Their impact on surface related

quantities, such as near surface temperature is also analysed. The present chapter
continues with a brief description of the basic properties of ENSO and the mid-latitude

response to tropical forcing. Subsequently, the NAO is introduced in more detail. The

methods and Seasonal Forecast Systems used in this thesis are illustrated in chapter 2.

The forecast verification scheme is examined in chapter 3. In the following chapters the

forecast skill on seasonal timescales is discussed on grid point scale (chapter 4) and in

terms of the winter NAO and its impact on near surface temperature (chapter 5).

Implications for the predictability of the European-Atlantic climate are also discussed.

Conclusions follow in chapter 6. Finally a user specific application is prescribed

(Appendix A).
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1.2. The Role of the Tropics

El Nino/Southern Oscillation (ENSO)

The seasonal to interannual climate variability in the tropical region is strongly
influenced by the atmosphere-ocean phenomenon known as ENSO. ENSO is defined as

the coupled process of a see-saw in atmospheric pressure between Tahiti and Darwin

namely the Southern Oscillation (SO, Walker 1924, Walker and Bliss 1930, Walker and

Bliss 1932) and the occurrence of warm southward flowing water off the coast of Peru

and Ecuador around the end of the year (El Nino).

A physical explanation of the coupling process between the SO and the equatorial Pacific

has been investigated by Bjerknes (1969). He proposed the existence of a large-scale
vertical and zonal circulation cell (Walker circulation) which is mutually linked to the

gradient of relatively warm surface water in the western and cold water in the eastern

equatorial Pacific. During normal (or negative) ENSO conditions warm surface waters in

the western Pacific are associated with enhanced convection and heavy rainfall in the

western Pacific. The strong convection causes an atmospheric flow convergence, which

redirects air parcels along the equator and forms a basin-wide circulation. In the eastern

Pacific air parcels descend and cause relatively dry surface conditions. Resulting easterly
surface winds in turn produce an east-west sea level gradient with deep warm water in the

West Pacific and shallow cold water in the East Pacific. During positive ENSO

conditions the warm surface water and corresponding convection is shifted in the middle

Pacific causing a change in the atmospheric circulation structure.

El Nino/Southern Oscillation: Impact

Such basin-wide variations appear with a frequency of 2-7y and have a remote impact on

distinct regions around the globe (for review see Diaz and Markgraf 2000). Figure 1-2

shows the correlation of the winter Nino3 index with 2m temperature for stations around

the globe (van Oldenborgh and Burgers 2004). Strong climate shifts are located in the

central Pacific and adjacent continents where ENSO is most active. Warmer than normal

winters which are associated with a positive phase of ENSO are found in eastern

Australia, northern South America and southeast Africa.

But also remote regions in the extra-tropics are affected by ENSO. During positive ENSO

phases there is a predominance of warmer than usual winter conditions in northwestern

and eastern Canada. In the southeast of the United States and the northwest Pacific cool

conditions are associated with the positive phase of ENSO. The European-Atlantic

impact of ENSO, however, is rather weak and more uncertain. Observational studies
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suggest that a weak response exists during boreal winter seasons (Fraedrich and Müller

1992, Fraedrich 1994). In particular, they found a correlation between strong positive

phases of ENSO with negative pressure anomalies in central and western Europe on the

one hand, and negative anomalies in northern Europe on the other hand. During cold

periods these fields are shifted northwards. They argue that this shift corresponds to a

shift in the dominating cyclone tracks. Recent modelling studies support this view of an

El Nifio-related weakening of the North Atlantic mean meridional pressure gradient and

an associated shift of the storm tracks (Merkel and Latif 2002).

El Nino/Southern Oscillation: Predictability

The equatorial waves in the tropical Pacific are essential for the description and

prediction of ENSO. The interplay of various types of ocean Kelvin and Rossby waves

propagating and reflecting at coastal equatorial boundaries have been suggested to

provide the memory of ENSO. An important theoretical development has been issued by
the "delayed oscillation theory" described by Schopf and Suarez (1988), Suarez and

Schopf (1988) and Battisti and Hirst (1989). Battisti and Hirst (1989) found that the

propagation delay of oceanic Rossby waves originates in the mid-equatorial Pacific.

Together with the reflection at the western boundary it yields the characteristic timescale

of ENSO. Although this model is highly idealised and the oscillatory variations are

0 60E 120E 180 I20W SOW

Figure 1-2: The correlation coefficients of winter 2m temperature with the Nino3 index

[5°S-5°N, 150°W-90°W] at different GHCN stations. Only stations with at least 50 years of

data are considered (from van Oldenborgh and Burgers 2004).
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superposed by non-periodic elements, such as random weather noise (i.e. westerly wind

burst) and the intrinsic chaos within the non-linear dynamics of longer lived components

(for a review see Neelin et al. 1994, Neelin et al. 1998), it provides the basis for

understanding the predictability of seasonal to interannual timescales in the tropics.

Coupled atmosphere-ocean models as well as statistical models yield an appropriate level

of forecast skill up to a lead time of 12 months (for review see Latif et al. 1998). A

forecast of the actual ENSO phase, however, can currently be made only a few months

ahead. The predictions on seasonal to interannual timescales critically depend on the

information on the phase at the beginning of such period. Especially, random weather

noise can strongly affect the forecast. Random bursts of westerly winds that occur when

El Nino is developing can amplify the event, while their occurrence after the peak of the

event can prolong its duration (Fedorov 2002). Concerning the 1997/98 El Nino, it is

argued that the strong amplitude could not have been attained without the unusual

occurrence of westerly wind bursts (McPhadden and Yu 1999, Vialard et al. 2001,

Boulanger 2001, Vitart et al. 2003).

In a comparative study of the forecast for the 1997/98 El Nino, Landsea and Knaff (2002)
examined 12 deterministic statistical and dynamical models and found no skill beyond

persistence on seasonal to interannual timescales for any model. However, if the

uncertainty of random atmospheric noise is accounted for, an enhanced forecast skill is

suggested (Fedorov et al. 2003, Coelho et al. 2003). In this thesis we shortly return to this

discussion and show that, on the base of state-of-the-art CGCM or a newly designed

probabilistic persistence model, there is reasonable forecast skill throughout the year, at

least one season ahead (see chapter 4).

1.3. The Mid-Latitude Response to Tropical Forcing

The dominant seasonal to interannual climate variability in the mid latitudes are the

Pacific North America pattern (PNA) and the North Atlantic Oscillation (NAO). These

patterns are characterised by a statistical linkage over large distances. Therefore they are

commonly referred to as "teleconnections". These teleconnections, however, have also a

close link to remote regions in the tropics (for review see Trenberth et al. 1998). The

seasonal variability of the PNA for instance is significantly affected by tropical heating
anomalies and climate variability such as ENSO (Straus and Shukla 2000).

The PNA is characterized by four centres of action which are spread in an arcade from

the mid-Pacific to the mid-Atlantic (Figure 1-3). The PNA pattern has similar signs
located south of the Aleutian Islands, over the southeastern United States and the sub¬

tropical Atlantic. Anomalies with signs opposite to the Aleutian center are located in the

vicinity of Hawaii and over central Canada. The pattern is most pronounced in the
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Figure 1-3: Composites of winter mean geopotential anomalies at 500hPa for seven strong

positive (left panel) and seven strong negative (right panel) PNA events. The climatology is

based on the period 1968-1996 (source: Climate Diagnostic Centre (CDC)).

northern hemispheric winter season and vanishes in the summer months. During winter

the Aleutian center spans most of the northern latitudes of the north Pacific.

The positive phase (Figure l-3a) of the PNA shows a deeper than normal trough over the

Aleutian area and a higher than normal ridge over the Rocky Mountains. This phase is

associated with an enhanced meridional upper-level flow over the US, which transports

above normal temperatures to the western United States. The east to southeast of the

United States is affected by an anomalous upper-level ridge and may experience
intrusions of polar air masses and enhanced cyclonic activity. Since this is the region
which provides the major initial sensitivity for cyclones over the North Atlantic, an

anomalous flow field may also be reflected in the storm track statistics and thus the

European climate (Merkel and Latif 2002). The negative phase (Figure l-3b) produces a

more zonal upper-level flow associated with less deep troughs over the Aleutian area and

the southeastern United States, and a lowered ridge over the Rocky Mountains.

Predictability

In contrast to the tropics the internal atmospheric variability in the mid latitudes has

almost the same amplitude as the variability generated by the "external" sources. The

interannual variability, however, has associated life cycles of several days and thus limits

the degree of seasonal predictability. The relationship of the variance of the internal

atmospheric dynamics to the variance generated by external forcing gives a first estimate

of the potential predictability on seasonal time-scales (Kumar and Hoerling 1995; Zwiers

and Kharin 1998 and reference therein). Figure 1-4 shows the ratio of S ST
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January-March
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Figure 1-4: The potential predictability defined as the ratio of SST determined winter mean

sea level pressure (SLP) variance to total SLP variance from an ensemble of 10 GCM

integrations for the period 1950-1999 (for details see Kushnir et al. 2002). The contour

intervals denote 10 % steps.

determined winter mean sea level pressure (SLP) variance to total SLP variance

generated from an ensemble of GCM integrations forced with global SST.

In the tropical belt the SST forced variance reaches values ranging from 60 % to 80 %. In

the mid-latitudes the externally forced variance is covering only about 20 % of the total

variance. At single locations, in particular off the west coast of America, a percentage of

about 60 % is found. For the European region only about 10 % of the variance is

described by the SST forcing. This demonstrates that most of the interannual variability
in the tropics is described by the SST-forced signal, whereas in the extra-tropics a large
fraction is related to the internal atmospheric circulation, apart from distinct locations

reminiscent to the teleconnections such as the PNA.

The forecast skill of seasonal climate mean anomalies in the extra-tropical Pacific region
has been investigated in a multi-institutional dynamical seasonal prediction project

(Shukla et al 2000). Several state-of-the-art atmospheric general circulation models with

identical initial and SST condition were integrated to produce 5- to 10-member

ensembles. Among others, they demonstrated that the forecast skill of winter mean mid-

tropospheric geopotential forecasts, defined for the PNA region, highly correlates to

strong ENSO phases. Figure 1-5 (from Shukla et al 2000) shows the anomaly correlation

coefficients (ACC) for the resulting ensemble mean of all models, sorted as a function of

the observed El Nino amplitude. It can be seen that the forecast skills in the PNA region

are enhanced during phases with anomalous tropical SST situations. For strong El Nino

years such as the winters 1982/83, and 1997/98 the forecast skills are positive for all

models. Less consistent skills are found for ENSO events with small amplitude.
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t.Q-

Figure 1-5: The anomaly correlation coefficients (ACC) of the ensemble mean JFM

forecasts of the geopotential 500hPa sorted for the absolute value of the Nino-3 anomalies.

The ACC are calculated over the PNA region for six different AGCM (from Shukla et al.

2000).

1.4. The North Atlantic Oscillation

Definition

The North Atlantic Oscillation (NAO) provides the major natural winter climate variation

for the Atlantic-European region. It is characterised by a dipole-like structure with high

pressure in the sub-tropical Atlantic and low pressure in the Arctic. The NAO is strongly
associated with the large-scale atmospheric circulation. Changes in wind speed and

direction as well as heat and moisture transport over the Atlantic and neighbouring
continents occur for different phases of the NAO. In its positive phase for example, it is

associated with a higher than normal pressure gradient in the North Atlantic and

enhanced westerly wind flows over the middle Atlantic towards northern Europe (for a

detailed review see Hurrell 2003). The NAO over the Alps is rather weak (Schär et al.

1998, Schmidli et al. 2002).

The NAO is typically described by an index representing a normalised sea level pressure

difference between the Azores and Island (Rogers 1984, Jones et al. 2003). Yet, there is

no universally accepted method to describe the NAO index. Most common indices are

deriving from instrumental records of individual stations or from statistical variance

analysis of regional meteorological fields, such as empirical-orthogonal-function (EOF)

analysis. The major advantage of NAO indices based on instrumental records is their

extension to several centuries in the past (Appenzeller et al. 1998, Cook 2003).

Nevertheless, they are limited to measurements at a few locations and hence are affected

by transient small-scale phenomena not related to the NAO. NAO indices based on EOF

analysis of gridded fields provide a more robust representation of the full spatial pattern,
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Figure 1-6: The NAO Index for the winter (DJF) mean based on the difference of

normalised SLP between Lisbon and Stykkisholmur/ Reykjavik (colours) and the first

principal components (PC) of an EOF analysis of the European-Atlantic geopotential at

500hPa (dashed). The dashed horizontal lines denote +/- standard deviation of the

normalised SLP.

but their data are available for the second part of the 20th century solely. In Figure 1 -6

two NAO indices are shown: the standard station based index and the EOF-analysis
based index used in this thesis.

An EOF-analysis examines the major patterns of variability ranked by their variance.

Figure 1-7 illustrates the four dominating patterns of variability resulting from an EOF-

analysis of the 500hPa fields for the period 1959-2001. EOF1 (a) is representative of the

NAO pattern which explains 39 % of the total variance. The variability of the NAO is

evident throughout the year but is strongest during winter months and accounts for about

one third of the total variance (Barnston and Livezey 1987). In summer the variance

reaches its minimum and the NAO is no longer the primary mode. The spatial pattern is

limited to a smaller region in the Atlantic region. EOF2 (b) has strong similarities to the

Eastern Atlantic pattern described by Wallace and Gutzler (1981). The pattern of EOF3

(c) is the spatially most confined one and bears strong resemblance to the composite

maps of the European-Atlantic blocking described by Tibaldi and Molteni (1990) and

Tibaldi et al. (1994). In our analysis EOF4 (d) is similar to the Eurasian type I pattern of

Barnston and Livezey (1987). But it also shares features with the Scandinavian pattern

described by Rogers (1990).

Using such statistical techniques for the northern hemispheric fields Thompson and

Wallace (1998) suggest that the NAO is a component of the more hemispheric pattern

referred to as the Northern Hemispheric Annual Mode (NAM) or Arctic Oscillation

(AO). In the AO a second, smaller high pressure centre in the mid-latitude Pacific is

added to the NAO. These ideas also refer to the role of the stratosphere within the
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Figure 1-7: The first four patterns of an EOF analysis of the winter (DJF) mean

geopotential at 500hPa for the European-Atlantic domain. The analysis is based on ERA40

data for the period 1959-2001. Shown are the (a) EOF1, (b) EOF2, (c) EOF3 and (d) EOF4.

The contour intervals are lOgpm. The patterns describe 39 % (EOF1), 19 % (EOF2), 13 %

(EOF3) and 9 % (EOF4) of the total variance.

climate system. (Perlwitz and Graf 1995, Thompson and Wallace 2000, Baldwin and

Dunkerton 2001, Ambaum and Hoskins 2002). Baldwin and Dunkerton (2001) for

instance suggest that at low-frequencies the annular mode is strongly coupled in the

vertical with the zonal symmetric fluctuation in the polar vortex and that the phase of the

patterns tends to propagate downwards. However, at the time of writing the discussion is

ongoing, whether the NAO and AO are the same phenomenon (e.g. Wallace 2000, Deser

2000, Ambaum et al. 2001, Wallace and Thompson 2002). Caution is also demanded

when interpreting the physics of teleconnection patterns deriving from EOF analysis (e.g.

Dommenget and Latif 2002).

NAO-relatedImpact

The NAO is accompanied by various impacts on the climatological, ecological and

economic systems. During extreme phases of the NAO with either enhanced, or reduced

westerly flow, respectively, it is associated with the modulation of surface temperature,

location and strength in storminess as well as the transport of moist air on large-scale
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over the Atlantic-European area. The paths of synoptic storm systems for example which

are located in a well defined region, the so-called storm-track, are shifted north-easterly

during the positive NAO phase (Rogers 1990, Rogers 1997). More intense and frequent
storms are found in the vicinity of Iceland and the Norwegian Sea (Serreze et al. 1997).
With an increased storminess the ocean surface in turn responds with enhanced wave

heights (Bacon and Carter 1993, Kushnir et al. 1997). An increase in wave height has

major consequences for weather parameter dependent systems such as coast protection,
offshore industries or shipping.

Changes in synoptic eddy activity inevitably modulate the transport of atmospheric
moisture and thus are closely related to variations in regional winter evaporation and

precipitation (Hurrell 1995, Dickson et al. 2000). Less precipitation and dryer conditions

are found over Greenland and northern Canada as well as in the Mediterranean region

during a positive phase of the NAO (Appenzeller et al. 1998) whereas wet conditions

occur more frequently over Scandinavia and bordering regions.

Additionally, variations in the near surface winter temperature are related to a large
extent to the variation of the NAO. During a positive phase warm air is advected over

northern Europe and further downstream. Increased temperatures are found over the

southeast of North America and the bordering ocean. Northerly winds with strong cold

air advection, however, are found in Northeast Canada and Greenland, and further

cooling is observed in north Africa and the Middle East (Appenzeller et al. 2000).

Further this temperature pattern is of special importance for the description of climate

change. Since the heat storage over land is smaller than in the ocean, this pattern strongly
contributes to the averaged northern hemispheric temperature variability (Hurrell 2003).

Furthermore, much of the global temperature increase is found to have occurred over the

northern continents during winter and spring (Folland and co-authors 2001), where the

pattern is characterised by a 1-2°C warmer-than-average over the continents, while the

surface temperature of the northern oceans are found to be colder-than-average. Such

pattern in turn is strongly associated with changes in the atmospheric circulation. The

latter are reflected by the positive phase of the NAO index in the Atlantic sector and an

intensification of the Aleutian low pressure system which forms part of the PNA (Hurrell

2003).

Several authors provide modelling and observational evidence for a close linkage of

climate change and the NAO (for details see Gillett et al. 2003). Although the increase in

anthropogenic greenhouse gases represents the largest man-made forcing on the climate

system, its influence on the NAO is still unclear (see Hartmann et al. 2000 for details).
There is also evidence that tropical SST is of special relevance for the recent trends of the

NAO (Hoerling et al. 2001). A possible mechanism is ascribed to an increase in the

tropical rainfall over the Indio-Pacific and corresponding dryness over the equatorial
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Atlantic and South-America. In a modelling study Bader and Latif (2003) found that the

warming of the tropical Indian Ocean may contribute to the strengthening of the NAO

during the recent decades.

NAO Predictability: The Climate Noise Scenario

The NAO index shows fluctuations on a wide range of timescales (Appenzeller et al.

1998). Under certain circumstances the NAO shows persistence for several winters. For

example Figure 1 -6 shows several decadal cycles with positive values from the beginning
of the 20* century to the early 20ties and from the early 20ties to the mid 40ties. This is

followed by a cycle of a strong negative phase and severe winters in Europe from the

early 50ties till the late 60ties. In the late 20* century the NAO index has undergone a

steady increase in amplitude. The significant frequency bands of the NAO are identified

by a spectral analysis (Appenzeller et al. 1998, Greatbach 2000) with strong enhancement

of the signal in quasi-biennial and decadal timescales (Barsugli and Battisti 1998, Deser

and Blackmon 1993). The spectral analysis indicates a relative increase of power with

decreasing frequency suggesting that the NAO behaves like an auto-regressive process

(red noise process) distinctly different from a purely random process.

However, the NAO index also provides considerable variability even within a given

season. Lately, it has been argued that the energetic weekly to monthly fluctuations in the

mid latitudes are essential for the subsequent variability on interannual and longer
timescales. In this so-called "climate noise paradigm" (Leith 1973, Madden 1976,

Hasselmann 1976, Madden and Shea 1978, Madden 1981) the atmospheric long-term
fluctuations are suggested to be entirely explained by processes intrinsic to the

atmosphere. Intrinsic processes are defined as the daily variations of any state of the

atmosphere. They are regarded as the unpredictable component, whereas the long-term
fluctuations result from finite time-averages of daily fields which represent the

predictable component.

Since the sample distributions of time-averaged atmospheric processes are not always

independent, nearby values are correlated. This leads to a conditional estimate of sample

averages, which is different from an estimation of an independent sample. The estimation

of the variance of such time series inevitably leads to an underestimation of the variance

of a sample distribution. In practice the variance of a N-day time average can be obtained

by including a variance inflator factor Q, as follows:
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Here er2 is the daily variance, a2N is the variance of an N-day time average and N the

sample size (Wilks, 1995). The factor Q can be estimated, for example by a Markov

process, assuming that the time series is represented by an autoregressive process AR(p),
where p denotes the order. By using maximum likelihood estimators the variance of time

averages of stationary time series can be estimated (for details see Jones 1975). The

variance for a specific time average is given by
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(1.2)

where a is the lag 1-day auto correlation. The ratio cr^/cr2 reveals the percentage of

variance that could be explained by an averaged time-series. Figure 1-8 illustrates the

results of (1.2) for different time averages N. For example, in the case of monthly mean

time series an autocorrelation value of a = 0.8 (corresponding to a de-correlation time of

nine days) indicates that about 25 % of variance is kept for longer periods. Feldstein

(2000) investigates the importance of the AR(1) model and the intrinsic variability of the

atmosphere to the NAO. Within the daily fields of 300hPa geopotential he fits an AR(1)

process to the observed intra-seasonal spectrum of the NAO with a de-correlation time of

about 19 days. Hence, for longer periods such as monthly and seasonal mean time series

he finds a remaining variance of about 45 % and 20 %, respectively.

NAO-SSTFeedback: Intraseasonal to Interannual Timescales

Coupled variations of the atmosphere and the ocean have early been suggested to be

influential in the North Atlantic climate system (Bjerknes 1964). Components such as the

heat capacity of the ocean, the SST variability and the ocean circulation are important
factors for a complete description of atmospheric interannual circulation anomalies.

Many observation and atmospheric modelling studies support the potential role of the sea

surface temperature (SST) anomalies in the Atlantic for the mid-latitude atmospheric
circulation (see Frankignoul 1985 and Kushnir et al. 2002 as review). Frankignoul (1985)
and Palmer and Sun (1985), for instance relate the impact of the oceans to the mean

seasonal mid-tropospheric geopotential height of about 20-80m and 10-20m, respectively

(standard deviation is considered about 40-110m).

In a conceptual approach, Barsugli and Battisti (1998) confirm that the power spectrum

of atmospheric temperature anomalies is to a large extent described by the rate of heat

exchange with the ocean (reduced thermal damping paradigm). The adjustment time-

scale of temperature anomalies in the ocean mixed-layer is approximately 1 month.

Behind that the exchange of atmospheric and ocean heat anomalies is reduced. This
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Figure 1-8: The ratio of time-average variance versus daily variance for monthly (N=30),
seasonal (N=90) and yearly (N=365) mean (see text for details).
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Figure 1-9: The first pair of eigenvectors of a SVD analysis of the NDJ geopotential height
at 500hPa (contours lOhPa) with (a) subsequent DJF and (b) previous MJJ SST (shadings

0.1°C). The climatology is based on ERA40 reanalysis for the period 1959-2001.

would lead to a decrease of the thermal damping rate, which in turn is associated with

deviations from the climate noise scenario. They assume this reduction to be responsible
for the enhancement of the energy level in the spectrum of the atmospheric anomalies.

With realistic parameters they could show that the reddening of the spectrum takes place

on interannual and longer timescales and the energy level is about 75 % larger than in the

climate noise scenario. These changes in the shape of the atmospheric temperature
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spectrum indicate a certain degree of enhanced potential predictability on the

corresponding time-scales.

The leading pattern of SST variability in the Atlantic appears as a tripole which reaches

from the high latitudes to the sub-tropical Atlantic. Figure 1-9 shows the dominating

pattern of co-variability between seasonal SST and geopotential 500hPa calculated with a

singular value decomposition (SVD) analysis. The SST tripole is most active in late

winter lagging the atmosphere by roughly one month (Figure l-9a - see also Davis 1976,

Davis 1978, Frankignoul 1985). This indicates the direct and stochastic response of the

ocean to anomalous air-sea fluxes (Hasselmann 1976, Frankignoul and Hasselmann 1977,

Cayan 1992).

However, there is increasing evidence of a positive feedback between the NAO and the

underlying ocean on intra-seasonal to interannual timescales. In a lagged singular value

decomposition (LSVD) analysis Czaja and Frankignoul (1999) and Frankignoul and

Czaja (2002) examine the correspondence between the Atlantic SST and the geopotential

at 500hPa for different time lags. They find statistically significant co-variance for a

summer/autumn North Atlantic SST and winter NAO. When SST leads up to seven

months a large-scale SST pattern is found with alternating signs southeast of

Newfoundland and along the eastern North Atlantic, denoted as the North Atlantic

Horseshoe pattern (NAH) (Figure l-9b). The NAH is in such a way that an anomalous

warm and cold SST off Newfoundland and the eastern Atlantic, respectively, are

associated with a positive phase of the NAO index (Czaja and Frankignoul 1999,

Drévillion et al. 2001). Czaja et al. (2003) argue that the NAH generates a NAO

response, which in turn generates a response in the anomalous SST tripole. As pointed
out by Peng et al. (2003) changes in baroclinicity and transient eddy activity are

associated with changes in the meridional SST gradient of the NAH and hence reflect a

direct interaction of the anomalous SST and the storm tracks. Furthermore, Peng et al.

(2003) show that a NAO-like response is primarily maintained by an anomalous eddy

forcing which results from the interaction of the heating-forced flow and the Atlantic

storm-tracks.

Recent modelling studies (Rodwell et al. 1999, Rodwell and Folland 2002) support the

idea of a forced NAO with proceeding SST. In coupled ocean-atmosphere GCMs they

provided evidence of an ensemble-mean NAO pattern forced by summer SSTs. They

suggest a low but significant correlation skill of the winter NAO based on the previous

May SST of about 0.45. They also find a seasonal forecast skill throughout the annual

cycle. Yet, some authors explain this skill as a result of the ensemble-mean statistic rather

than of a physically based mechanism (Bretherton and Battisti 2000).

Finally, the dominant pattern of the SST tripole shows also a pronounced branch over the

sub-tropical Atlantic. It should therefore be noted that there is also a close link of the
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NAO to tropical climate variability in the Atlantic (for review see Marshall et al. 2001,

Halliwell and Mayer 1996, Czaja et al. 2002).

NAO-SSTfeedback: Decadal to Inter-decadal Timescales

On decadal to inter-decadal timescales, there are also preferred modes of ocean heat

transport variability which provide certain degrees of atmospheric predictability (Latif

1998, Grötzner et al. 1999). These particular modes involve either wind-driven ocean

gyres (Latif and Barnett 1994, Grötzner et al. 1998), or thermohaline circulation (THC)

(Delworth et al. 1993 ,Timmermann et al. 1998).

The mid-latitude decadal coupled mechanism involving the wind-driven ocean gyres for

instance, is introduced by Latif and Barnett (1994), Latif and Barnett (1996) and Grötzner

et al. (1998) for the North Pacific and Atlantic ocean, respectively. The decadal coupling
describes the coexistence of SST anomalies in the sub-tropics and mid latitudes with

large-scale atmospheric circulations such as the PNA and the NAO. The spatial pattern

for the North Atlantic is similar to Figure l-9a. The evolution of the SST shows a

clockwise rotation of the anomalies around the sub-tropical gyre. The characteristic time-

scale of this damped decadal oscillation amounts from 12y to 17y, as obtained from

observational (Deser and Blackmon 1993) and modelling studies (Latif and Barnett

(1996), Grötzner et al. 1998). Such gyre modes are inherently wind driven but the

memory resides in the ocean (Latif and Barnett 1998). It has been suggested by many

studies that the enhanced variability displayed by the SST tripole at the decadal band

might reflect the oceanic impact (Bjerknes 1964, Battisti et al. 1995). It is found that the

variations in the extension and intensity of the Gulf Stream are essential for the coupled
oscillation (Latif and Barnett 1998, Czaja and Marshall 2001).

Inter-decadal coupled mechanisms typically involve the THC. On the one hand they
include ocean-only modes which do not depend on a feedback with the atmosphere (e.g.
Delworth et al. 1993, Griffies and Tziperman 1995, Delworth and Greatbach 2000). On

the other hand Timmermann et al. (1998) found a coupled atmosphere-ocean mode with a

close relationship between the THC and the NAO variability. They suggest that a strong

North Atlantic THC leads to an increase in SST. An increase in SST corresponds to a

strengthening of the NAO, which in turn produces a weaker than normal evaporation off

Newfoundland. Less evaporation, however, is linked with negative anomalies of sea

surface salinity and a weakening of the deep convection in the sinking region. This leads

to reduced THC, which again decreases the poleward heat transport. The characteristic

timescale of this oscillation is found to be about 35y.
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Chapter 2:

Seasonal Climate Forecasting

Long-range forecasting with seasonal outlook is defined as the "description of averaged
weather parameters expressed as a departure from climate values for a specific season"

,

where a season is defined as a period which encompasses several months. A prediction of

weather parameters and their averaged quantity for such a period, however, always
contains uncertainties, which are related to the intrinsic chaotic nature of the system and

to the model formulation. Intrinsic uncertainties reduce the prediction of a system.

Forecast skill can be enhanced by using ensemble forecasts and forecasts of multiple

models, respectively. These forecasts are probabilistic in nature and require probabilistic
verification strategies. Hence in the first section (2.1) of this chapter the concept of

probabilistic prediction is introduced including a brief description of the sources of

uncertainty and the probabilistic forecast verification.

The remainder of the chapter is reserved for the description of the forecast systems. In

this study mainly dynamically based forecast systems are used, namely the ECMWF

Seasonal Forecast System 2 (2.2) and the joint European Multi-Model DEMETER

system (2.3).

2.1. Probabilistic Prediction

Sensitivity to Initial Conditions

Predictions within complex dynamic systems such as the ocean-atmosphere are

inherently related to the sensitivity to its initial conditions. It is known from the

dynamical system theory that the growth of errors, introduced by observations, are

usually linked to enhanced instability in phase space (Lorenz 1963, Guckenheimer and

Holmes 1983, Argyis et al. 1995). Two close initial conditions may have similar solutions

after a short time of integration. The passage through an unstable region in phase space

forces them to disperse, so that their final states indicate totally different solutions and

hence no prediction can be made. Therefore a single solution produces not necessarily a

useful forecast.

2

http //www wmo ch/web/www/DPS/GDPS-Supplement5-AppI-4 html
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An appropriate approach which accounts for the uncertainty due to initial conditions is

the stochastic-dynamical approach introduced by Epstein (1969). He derived an equation
for the evolution of a probability density function (PDF) governed by a simple dynamical
model. The stochastic-dynamical approach which was introduced for a low-order model

with an infinite set of ensemble members was found to be impractical for models with

high degrees of freedom. Monte-Carlo methods provide a more practical method. Rather

than solving the equations for the whole distribution of initial conditions, the forecast is

based on the behaviour of a finite size of trajectories. Each trajectory is defined as a

single solution of the system. This type of method is called ensemble forecast and was

first introduced by Leith (1974).

A forecast is finally attained by a statistical post-processing of the ensemble. The

ensemble mean for instance is commonly used because it removes the unpredictable
noise. A large or small ensemble spread further indicates whether the forecast uncertainty
is high or low (Scherrer et al. 2004). And finally the full distribution of the ensemble can

be used to give a quantitative probabilistic forecast.

Sensitivity to Boundary Conditions

But reliable predictions on seasonal timescales are not only possible by using ensemble

forecasts alone. The variability of synoptic disturbances for instance is able to obscure the

signal on seasonal timescales. A seasonal climate outlook becomes only feasible if the

long-term variability associated with e.g. sea-surface temperature or land-surface

characteristics forces the atmospheric system in such a way, that significant shifts in the

probabilities of low-frequency variability occur (Palmer 1993).

The response of a nonlinear system such as the atmosphere to an external forcing (i.e. the

ocean) is illustrated by the experiment shown in Figure 2-1. The resulting probability

density function of the system is described by the probabilities of finding balls in the

corresponding cups. With no external forcing, the balls end up with a 50 % chance in

either the left or right cup (Figure 2-la). This is what we expect if we consider the

internal atmospheric variability alone. If we further assume a Gaussian distributed

climatology, any prediction based on such a model solution would have no further benefit

compared to a climatological based prediction. This situation is different if a weak

external forcing (the airflow does only influence the falling balls) affects the atmospheric

system (Figure 2-lb). This corresponds, for example, to an event such as El Nino. Now,

the balls are preferably (say with a chance of 70 %) placed in the left cup, which lies in

the forcing direction. The probability distribution of the system is somewhat skewed and

differs from the climatological distribution. Such a forecast provides better results than a

forecast based in climatology.
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Figure 2-1: An experimental set up of a coupled atmosphere-ocean toy system. The

atmospheric system and its possible solutions are described by a ridge and underlying cups,

respectively. Initially disturbed balls mark possible synoptic weather systems. The ocean is

described by a fan and the coupling is demonstrated by a switch connected to the fan. The

figure shows (a) the atmosphere only, (b) atmosphere and ocean uncoupled, (c) nonlinear

atmosphere and ocean uncoupled and (d) nonlinear atmosphere and ocean coupled

(adapted from Palmer, 1993).

In a highly nonlinear system the solution trajectories become more complicated. This is

shown in (Figure 2-lc) with the channels reversed. Again the dropping balls are

influenced by the airflow, but here there is a higher probability to find a ball in the

upstream cup. Furthermore, in a system such as the atmosphere-ocean, forcing and

response processes may be coupled in either a positive or negative way (Figure 2-Id). In

a positive feedback loop for example the right cup would send a signal that decreases the

amplitude of the forcing instrument. In turn this forces the balls to be further placed in the

left cup.

As pointed out by Palmer (1993) the response of a dynamical system such as the ocean-

atmosphere to an external forcing is primarily manifested in the relative frequency of the

associated regimes. He argues that the location of distinct quasi-stationary regimes is

insensitive to the forcing, and that the influence due to the forcing is localized in space
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and time. This is of particular interest for seasonal to interannual flow regimes such as the

PNA and the NAO (see section 1.3 and 1.4).

Probabilistic Forecast Verification

In a general sense an objective evaluation of the forecast quality makes use of the joint

distribution of the probability function of forecasted values yt and the observed values ot.

For practical use the forecast quality is often summarised by scalar measures. For

meteorological applications the binary Brier Score (BS) and the multi-categorical Ranked

Probability Score (RPS) are the most common used measures. The BS is defined as

follows:

BS=^t(yk-°k)2- o-3)
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Here N denotes the number of forecast/observation pairs and J denotes the number of the

equiprobable classes. The BS averages the squared differences between pairs of forecast

and observation probabilities. The RPS averages the squared difference between the

cumulative probabilities of a forecast and an observation over a number of equiprobable
classes J. If the observation lies in class i, the cumulative probability of the observation is

unity in such case and subsequent cases. For classes prior to the class i the cumulative

probabilities are zero. For two equiprobable classes the RPS is similar to the BS. For a

perfect forecasting system the BS and the RPS are zero. The scores are defined with the

quadratic norm and are comparable to the mean squared error (MSE). However, they are

taken in probability space and not in physical space, as is the case for the MSE.

The forecast performance is usually quantified with a skill score (SS). Formally, the skill

score describes the benefit of a forecast score S over the reference forecast score Sref

relative to a perfect forecast score Sperf, i.e.:

S — S
SS = ^xlOO (1.5)

°perf °ref

Usually the reference forecast is a climatological, persistence or random forecast. A

positive skill score indicates an improvement with respect to the reference forecast.
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The BS and the RPS can be decomposed into scalar attributes as follows (a full

description of the decomposition is given in Murphy 1973 or Stephenson and Jolliffe

2003):

BS = ^ttNtiyt-ök)2--ttNk(ök-o)2+ ö(l-ö), (1.6)
N

k=i
(

n k=l
(

reliability resolution uncertainty

where ö is the relative frequency of the observations, Nk the number of times each

forecast is used in the collection of forecast being verified and ok is the conditional

average observation.

The reliability (REL) term is defined as the squared difference between the forecast

probability and the conditional distribution in the different probability categories. It

describes the relationship between the forecasts and the average observation of specific
forecasts (i.e. is it usually 20°C when the temperature forecast is 20°C?).
The resolution (RES) term is defined as the average square difference between the

conditional distribution in each probability category and the relative frequency observed

in the whole sample. It compares the average of observations for one set of forecasts with

another (i.e. is it usually warmer when the forecast is 25°C compared to when the

forecast is 20°C?).
The uncertainty (UNC) term is independent of the forecast and is only related to the

relative frequency of the observations. Hence it is the reliability and the resolution term

that determine the forecast performance.

The Brier Score for a climatological forecast is equal to the uncertainty term, since the

resolution term and the reliability term are both zero (Wilks 1995). Hence using a

climatological forecast as a reference forecast in the calculation of the Brier Skill Score

(BSS) can be written as:

BSS =

RES-REL

UNC

From this equation follows, that positive skill scores are achieved if the RES term > REL

term (the UNC term is always positive). A similar equation holds for the Ranked

Probability Skill Score (RPSS, see Hersbach 2000). This equation will be used in chapter
3 where the sensitivity of the BSS and RPSS regarding the ensemble size is discussed.

Finally there are desirable characteristics of a skill score which are related to the

consistency of a forecast verification statistic. For example a strictly proper score is

necessary to avoid that better scores can be achieved by artificially forecasting always the

same probability values. Equitability of a scoring rule is also important. It requires
random forecasts or constant forecasts to have the same expected no-skill value (Murphy
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and Daan 1985). The BS and the RPS for example are strictly proper, but are not

equitable as will be shown in chapter 3.

In this thesis the forecasts are verified using the RPSS. In chapter 3 we turn to the

consistency problem linked to the RPSS and present a probabilistic verification statistic

which is equitable and strictly proper.

2.2. The ECMWF Seasonal Forecast System 2

Ocean andAtmosphere Model

The ECMWF Seasonal Forecast System 2 is an ensemble prediction system (EPS) which

consists of an ocean and an atmospheric model as well as a coupling strategy which

interpolates between the two components. The prediction period of System 2 is up to 6

months. A complete description is found in Anderson et al. (2003) and on the ECMWF

webpage .

The ocean model is the Hamburg Ocean Primitive Equation model (HOPE) version 2

(Latif et al. 1994, Wolff et al. 1997). The ocean model is run on an Arakawa E grid with

a zonal resolution of 1.4° degrees and a meridional resolution of 0.3 degrees to 1.4

degrees grid spacing. The model has a total of 29 vertical levels. Since the model is run

on a sparse grid, several physical processes are not resolved explicitly but parameterized

(for details see Anderson et al. 2003). Furthermore a pseudo ice-model is used over polar

regions. In the forecast mode the sea-ice is embedded with a 60 day relaxation time to

climatology. Monthly climatological river runoffs are included as well.

The atmospheric model is the ECMWF Integrated Forecast System (IFS) version 23 r44

with 40 vertical levels (see also Gregory et al. 2000). The horizontal representation

employs a spectral grid resolution (T95) for the dynamical part and a Gaussian grid of

1.875 degrees for model parameterizations. A two time-level semi-Lagrangian scheme

with a 1 -hour step is applied. Physical processes are treated in the state-of-the-art fashion

(Anderson et al. 2003). Furthermore, four sub-surface soil levels are included with

prognostic moisture and temperature as well as a vegetation canopy.

The ocean and the atmosphere model are associated with different grids and coastlines.

An Ocean Atmosphere Sea Ice Soil (OASIS) coupler is applied to interpolate between

these two grids. The atmosphere passes surface fluxes of heat, momentum, precipitation
and moisture once a day. The ocean returns its instantaneous SST.

http //www ecmwf mt/products/forecasts/seasonal/documentation

4
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Finally, a sub-surface ocean data assimilation scheme is introduced in the model. The

assimilation scheme is a univariate temperature optimum interpolation (Smith et al.

1991), which is evaluated on sub-domains on the horizontal model grid. The interpolation
is used for each level in the first 1000m, with exception of the top layer. The impact of

sub-surface ocean data assimilation has shown to improve dynamical forecasting such as

ENSO (Alves et al. 2003).

Ocean andAtmosphere Initial Conditions

The initial conditions of the ensemble members in the ocean model are generated by a

perturbation technique that accounts for wind stress and SST anomalies. These

perturbations include uncertainties deriving from the assimilation, observations and time

interpolation schemes. Unlike earlier systems, the wind stress estimates use analysed
winds instead of forecasted stresses from the atmospheric numerical weather prediction

system. The ocean model provides an ensemble of five ocean analyses, which include a

measure of uncertainty imported by the surface winds. The forcing fields are contributed

by the ERA15 Re-analysis and operational analysis from 1994 onwards.

The atmospheric initial conditions are also introduced by ERA15 and operational analysis
from 1994 onwards. A total of five ensemble members were generated for a 15 years

hindcast period (1987-2001), giving a total climatology consisting of 75 ensemble

members. For forecasts starting in May and November 40 ensemble members were

generated. This holds also for all the operational runs from August 2001 onwards. Unlike

the Seasonal Forecast System 1, all ensemble members are generated at the first day of

each month. The ensemble members are constructed by combining the five ensemble

members from the ocean run with different SST perturbation and a stochastic forcing.
This takes into account a greater and thus more realistic spread in the initialization.

Bias and Drift

Model deficiencies cause the climate model to generate systematic errors known as bias

and drift (Arpe and Klinker 1986, Tibaldi et al. 1990). Bias is defined as the difference

between the model and the observed climatology for a given lead time, whereas the drift

is determined as the time dependent difference of the bias for different lead times.

Different strategies exist to assess systematic errors in climate models (e.g. Molteni and

Buizza 1999, Vidale et al. 2003). Vidale et al. (2003) for example use the interannual

variability to evaluate a high-resolution climate model (HCRM, Schär et al. 1999).
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Figure 2-2: The ECMWF system 2 bias of (a) the winter mean 2m temperature (shadings
1°C interval) and (b) geopotential 500hPa (shadings lOgpm interval) for lead time 3 months.

The ERA40 Re-analysis was used as observations.

The two basic error properties of the ECMWF system 2 are examined briefly. Figure 2-2

shows the bias for the winter mean 2m temperature (Figure 2-2a) and the geopotential at

500hPa (Figure 2-2b) against ERA40 for a lead time of three months. The pictures reveal

strong bias in particular for the 2m temperature. In the central Atlantic there is a large-
scale bias of -1°C to -3°C. The large-scale bias suggests a systematic failure of the mid-

Atlantic ocean-circulation, in particular regarding the Gulf-Stream location. Further

strong negative biases up to -3°C are found over the northern African continent. The

negative bias exceeding -5°C in the polar region, suggesting a major error with the sea ice

model. A strong positive bias is found over the northern American continent with values

ranging from 1°C to 3°C, whereas over Central Europe the temperature bias is mostly
around zero. Since the error amplitude is around the magnitude of the variability on

seasonal time-scales, the bias is a major drawback for real applications and needs to be

corrected. The 500hPa geopotential (Figure 2-2b) shows an enhanced negative bias over

central Europe and over continental North America with magnitudes up to 60hPa. A

similar positive bias is found over Newfoundland.

The model drift for the winter mean near surface temperature and mid-level geopotential
is shown in Figure 2-3 Here the drift is determined as the difference between the bias for

lead time 3 months and the bias for lead time 0 months. There is a positive drift of the 2m

temperature (Figure 2-3a) over the Eurasian and north American continents with a value

of about 1-2°C. A massive negative drift with magnitude >2.5°C is found over the polar

oceans. The drift for the mid-tropospheric circulation (Figure 2-3b) is dominated by a

large positive signal over Newfoundland and the Middle East. The magnitudes are around

10-20hPa.
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Figure 2-3: The drift of the ECMWF System 2 of (a) the winter mean 2m temperature

(shadings 0.25°C interval) and (b) geopotential 500hPa (shading lOgpm interval). Shown

are the differences between lead time 3 months and lead time 0 months.

Climate Mean Replacement & Probabilistic Correction

Observed seasonal climate anomalies are typical of similar magnitude as the model bias

(for example, temperature anomalies amount to about 1°-2°C). Post-processing is needed

to remove the model bias. In this thesis two simple approaches are used to correct the

bias.

A first order correction is applied to the climatological mean and is termed climate mean

replacement (CMR). Here the model anomalies are determined with respect to the model

climatology at every lead time and for all start months. This is necessary in order to

correct the time dependent drift. The CMR can be used for applications requiring
absolute values by adding the observed climatology to these model anomalies. Figure 2-4

illustrates the concept of the CMR.

Second, a probabilistic correction is applied to the forecasts. Here the model and the

observation anomalies are compared in terms of equal probabilities. If the occurrence of a

forecasted anomaly of 2°C has a 70 % chance, for example, then the forecasted anomaly
is compared to an observation anomaly having a 70 % chance of occurrence. The

probabilities of the observations and forecasts are defined by using their individual

distributions. If the observation and model anomalies are Gaussian distributed then the

probabilistic correction can be applied by standardisation of the observation and model

distribution.
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Figure 2-4: The climate mean replacement

(CMR) illustrated for a single forecast

F(xFC) and a given climatological
distribution F(xCl). The CMR shifts the

cumulative forecast distribution by ACLIM

closer to the observation x0bs. The replaced
forecast distribution is given by F(xFC;CMR).

2.3. The Multi-Model System (DEMETER)

In the last years several projects have assessed the benefit of multi-model configurations.
In the European project PROVOST (Prediction of Climate Variations on Seasonal to

Interannual Timescales) a multi-atmospheric-model-ensemble based on prescribed
observed SST was created to quantify seasonal predictability (Palmer and Shukla, 2000).
PROVOST was launched from 1997-1999 to develop the scientific basis and the means

for seasonal forecasting. The two major results of PROVOST can be summarised as: (I)

Despite using identical SST boundary conditions, the models have shown a large
variation in the internal and external forced variability. This has also been demonstrated

in the Dynamical Seasonal Prediction (DSP) project undertaken at the same time in the

United States (Shukla 2000). (II) The multi-model approach has proven to have a higher
forecast skill than the single-model approach (Doblas-Reyes et al. 2000).

The DEMETER (Development of a European Multi-Model Ensemble Prediction System

for Seasonal to Interannual Prediction) project has been developed as an extension to

PROVOST (Palmer et. al, 2004, Hagedorn et al. 2004, Doblas-Reyes et al. 2004).
DEMETER was designed to produce and combine state-of-the-art coupled atmosphere-

ocean models to a series of multi-model hindcast ensembles. The focus was on seasonal

climate prediction but there have been selected applications in the area of agronomy and

tropical diseases. One of the major results has been the enhanced probabilistic skill of

seasonal malaria incidence, obtained by a dynamical malaria model initialised with

forecasts of the DEMETER system (Morse et al. 2003). Further efforts have been made

in probabilistic downscaling of seasonal forecasts to produce crop yield estimations. A

complete description of the DEMETER system can be found in Palmer et al. (2004) and

on the ECMWF web-page5.

5

http //www ecmwf mt/research/demeter
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With twelve partners contributing to the project, seven were extensively developing the

comprehensive CGCMs. The model-developing partners are summarised in Table 2-1.

The DEMETER system consists of a total of seven combinations of coupled atmosphere-

ocean models running in full ensemble mode. The integrations start four times a year

(Feb, May, Aug, and Nov) with a common hindcast production period from 1980-2001.

Each of the models contains a set of nine ensemble members with 6-monthly hindcast

integrations. Prior to conducting the forecast runs, three ocean analyses are initiated with

ERA40 flux forcing. The resulting SST is finally perturbed by superposed symmetric
anomalies giving nine ensemble members. The atmospheric initial conditions come from

the ERA40 (details see Table 2-1). In this thesis combined DEMETER data for the period
1987-2001 are used for forecasts starting in May and November. In chapter 5 the long
hindcast period 1959-2001 of the ECMWF model is analysed for forecasts starting in

November.
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Table 2-1: Models used in the DEMETER system with information about their atmospheric
and ocean components, initial conditions and ensemble generation. For details see Palmer

et al. (2003).
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Chapter 3:

A Debiased Ranked Probability Skill Score to Evaluate

Probabilistic Ensemble Forecasts with Small Ensemble

Sizes
6

Müller7, W. A., C. Appenzeller8, F. J. Doblas-Reyes8 and M. A. Limger8

Abstract:

The ranked probability skill score (RPSS) is a widely used measure to quantify the skill

of ensemble forecasts. The underlying score is defined by the quadratic norm and is

comparable to the mean squared error (MSE), but is applied in probability space. It is

sensitive to the shape and shift of predicted probability distributions. However, the RPSS

shows a negative bias for ensemble systems with small ensemble size as recently shown.

Here, two strategies are explored to tackle this flaw of the RPSS. First the RPSS is

examined for different norms L (RPSSl). It is shown that the RPSSl=i based on the

absolute rather than the squared difference between forecasted and observed cumulative

probability distribution is unbiased. RPSSl defined with higher order norms shows a

negative bias. However, the RPSSl=i is not strictly proper in a statistical sense. A second

approach is then investigated, which is based on the quadratic norm, but with the

reference forecast reduced to sub-samples of the same size as the forecast ensemble size.

This technique results in an unbiased and proper skill score which is denoted as the de-

biased ranked probability skill score (RPSSd) hereafter. Both newly defined skill scores

are independent of the ensemble size whereas the associated confidence intervals are a

function of the ensemble size and the number of forecasts.

The RPSSl=i and the RPSSd are then applied to the winter mean (DJF) near surface

temperature predictions of the ECMWF Seasonal Forecast System 2. The overall

structure of the RPSSl=i and the RPSSd are more consistent and largely independent of

the ensemble size, unlike the RPSSl=2 Further the minimum ensemble size required to

predict a climate anomaly, given a known signal-to-noise ratio is determined by

employing the new skill scores. For a hypothetical set up comparable to the ECMWF

hindcast system (40 members, 15 hindcast years) statistically significant skill scores were

only found for a signal-to-noise ratio larger than -0.3.

Accepted by J Climate, revised version 13 April 2004

7
Swiss Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland

European Centre for Medium-Range Weather Forecast (ECMWF), Reading, UK
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3.1. Introduction

In recent years probabilistic ensemble forecast systems have been established in a wide

area of applications. The probabilistic nature of these forecasts requires verification

techniques based on probabilistic skill measures. However, a general consent on the best

skill score does not exist. The choice depends on the particular application considered or

the forecast system being used. Examples are Brier Scores or the Relative Operating
Characteristics (for details see Swets 1973; Mason 1982; Stephenson and Jolliffe 2003;

Wilks 1995). The Brier Score, for instance, is essentially the mean squared error of the

probability forecast of a dichotomous event. An example is a probability forecast of the

winter mean temperature to be above or below the climatological mean (Palmer et al.

2000). For a range of applications, such a categorical score gives an incomplete picture
since not the entire shape of the probability function is considered. A multi category

score that measures the shape as well as the central tendency of the whole probability

density function (PDF) is more eligible. An often used score for such applications is the

ranked probability score (RPS) (Epstein 1969; Murphy 1969, 1971).

The RPS is based on the cumulative density function (CDF) and classically defined by
the quadratic norm, hereafter denoted as RPSl=2 The score is the integrated squared
difference between the forecasted and the observed CDF. It can be seen as the

probabilistic extension of the mean squared error (MSE). However, the RPSl=2 is applied
in the cumulative probability space and not in the physical space, i.e. the integration is

taken over categories. It can be interpreted as an extension of the Brier Score for finite

ordered categories. The extension to an infinite number of classes results in the

continuous RPS (Unger 1985; Hersbach 2000)

The current ensemble prediction systems (EPS) for medium range forecasts (3 to 10

days) use ensemble sizes varying from 17 (NCEP) to 50 (ECMWF) members to

construct the probability density function (Toth and Kalnay 1993, Tracton and Toth 1993,

Buizza et al. 1998). For long-range forecasts, with prediction times of months to years,

the ensemble size is usually smaller. The reason for having small ensemble sizes lies

primarily within computational costs. This is particularly true for hindcast experiments
that are used for verification and calibration. For example, the 15 years hindcast database

of the ECMWF Seasonal Forecast System 2 mostly consists of 5 ensemble members.

Obviously, such a small ensemble size (and number of forecasts) is a potential statistical

problem. In the frame of numerical weather prediction Buizza and Palmer (1998) have

shown that the skill can be improved by increasing the ensemble size, but the extent to

which improvement occurs depends on the measure used. For the RPSSl=2 they found

major skill improvement for at least up to eight members. In a perfect seasonal forecast

approach Deque (1997) determined the ensemble size required for skill score saturation
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for various parameters. An ensemble size of 40 was suggested for European temperature

forecasts. Kumar et al. (2001) have also explored the influence of the ensemble size on

the RPSSl=2 and noted that the RPSSl=2 is strongly negative biased for a small ensemble

size. Based on this bias the minimum ensemble size which is required to predict a climate

signal given a known signal-to-noise ratio was derived (mean shift of the anomaly
distribution in standardised units).
Here we show that the substantial negative bias of the RPSSl=2 for small ensemble sizes

is primarily a consequence of the discretization and squaring measure in its formulation.

Two strategies are introduced that overcome these deficiencies (section 3.2). The

characteristics of the suggested modifications of the RPSSl=2 are examined with a

synthetic example (section 3.3). The new techniques are then applied to a real seasonal

winter temperature forecast based on the ECMWF Seasonal Forecast System 2 for the

years 1987-2001 (section 3.4) and to the climate signal-to-noise detection problem

(section 3.5). Finally, a conclusion and discussion are given in the final section.

3.2. Definition of RPSSl

Similar to the mean squared error (MSE) the RPSl=2 is a quadratic measure and thus

larger deviations from the actual probability are penalised much stronger than smaller

ones. The RPSl for any norm L is defined as RPSL =/AT'^lk_1^PSLk where N is the

number of forecasts, k is the forecast index and:

RPSl*=Y\Y]-Oj\ . (3.1)

Here J denotes the number of the equiprobable classes, L is the norm. The cumulative

probabilities of the forecasts Yj and the observations Oj are defined as Y] =YJi=1y, and

Oj =Xti°< '
wnere Yi and Oi are the probability of the forecast and observation,

respectively, for the class i. The RPSl is zero in case of a perfect forecast and positive
otherwise. The calculation of the skill score is based on the comparison of the forecast

score (RPSl,fc) to a reference forecast score (RPSl,cl) relative to a perfect forecast. Thus

the RPSSl becomes:

itxpsLFCk
RPSSL=\-^ . (3.2)

k=\

Any positive value of the RPSSl indicates a forecast benefit compared to the reference

forecast. For L=2 the skill score becomes the standard squared definition (Wilks 1995),
whereas L=l gives the absolute skill score RPSSl=i- In this study the distribution of the

reference forecast is defined by a Gaussian fit to the observations. The equiprobable
classes are obtained from the distribution of the reference forecasts.
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3.3. A Synthetic Example

In the following a white noise climate system is employed in order to explore the

sensitivity of the RPSS L=2to the ensemble size. Forecasts and observations are chosen to

be random Gaussian time series. In such a system there is nothing to predict by
definition. Whatever skill score is used, the expected outcome should be a value that

gives no benefit compared to a reference forecast. The white noise climate consists of a

sample of 100.000 cases. For the skill scores, 300 sub-sets are randomly chosen and

verified against randomly chosen observations. This provides for a robust estimate of the

skill score. This procedure is repeated 100 times for 100 chosen observations. This gives
100 skill scores from which the mean and the 95 % confidence intervals are calculated.

These confidence intervals are chosen as guidance for further testing of the real seasonal

forecasts against random time series. Other significance tests exist and a more complete
discussion is found in Wilks (1995) and Nichollis (2001). In the light of a potential

application to the ECMWF forecast system, the skill scores are calculated with up to 40

ensembles members and a number of 15 forecasts. Three equiprobable classes (above,

normal, below) are used.

Figure 3.1a shows the dependence of the RPSSl=2 on the ensemble size for white noise

climate forecasts. The mean of the RPSSl=2 exhibits negative skills ranging from -0.20 up

to -0.02 for an ensemble system of size 5 and 40, respectively. These values are below

the expected value of zero benefit. With a larger ensemble size the bias decreases slowly
towards zero. The 95 % confidence intervals (thin lines) are asymmetric and vary from

about -0.45/0.05 for a 5-member system, to about -0.10/0.05 for a size of 40. The

confidence intervals as a function of the number of equiprobable classes are shown in

Fig. 3.2a. The confidence intervals of a 40-member forecast system (black) are much

closer to the mean values than for a 5-member system (grey). A strong asymmetry around

zero is visible for a small ensemble size. The magnitudes of the confidence intervals are

largest for 2 classes and become independent of the number of classes from 5 onwards.

Finally, the bias and confidence intervals are evaluated as a function of the number of

forecasts (Fig. 3.3). The confidence intervals are closer to the mean for a higher number

of forecasts. However, the bias remains unchanged indicating that it is related to the

ensemble size.

The corresponding results for the RPSSl=i are shown in Fig. 3.1b and Fig. 3.2b. The

mean of the RPSSl=i (Fig. 3.1b) is located close to zero even for the smallest ensemble

size, e.g. for a 5-member system. The 95 % confidence intervals are spread

symmetrically around the zero mean with a magnitude of about ±0.14. For a large

ensemble size (40) the spread is about ± 0.05. The confidence intervals are now

symmetric around zero for all classes (Fig 3.2b) and only depend on the ensemble size,

with reduced spread for larger samples. Obviously, the RPSSl=i has no bias for small

ensemble sizes.
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Figure 3.1: The (a) RPSSL=2, (b) RPSSL=i and (c) RPSSD for white noise climate forecasts as

a function of the ensemble size. The thin lines denote upper and lower 95 % confidence

intervals for a 15 year sample. Thick lines show the mean values. Three equiprobable
classes are used.



Chapter 3:. The Debiased Ranked Probability Skill Score
...

34

06

04

02

II

</)
u T

Q.

a:

-0 2 -'-

-0 4 -

-0 6

a)

10 15 20 25 30

Number of Classes

35 40

w
w
Q.

a:

15 20 25 30

Number of Classes

35 40

06

04

02 -

Q.

a:

-0 2

-0 4 -

-0 6

c)

10 15 20 25 30 35

Number of Classes

40
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of equiprobable classes. Black (grey) lines illustrate sets of 40 (5) ensemble members.
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Figure 3.3: The RPSSL=2 for 5 (grey) and 40 (black) ensemble members as a function of the

number of forecasts. The thin lines denote upper and lower 95 % confidence intervals for a

15-year sample. Thick lines show the mean values.

To clarify the origin of these differences, a step by step calculation is performed for the

RPSl=2 and RPSl=i with white noise climate forecast. Suppose a forecast for two

equiprobable classes (in this case the RPSl reduces to the Brier Score, BS). Since the

cumulative probabilities for the forecast and observation in the second class are always
both equal to one, the RPSL=2,k value reduces to:

RPSL__2k=(Yl-Ol)\ (3.3)

Similarly the RPSl=i reduces to:

*PSL__hk=\Y,-0,\ . (3.4)

A climatological reference forecast predicts a probability of 1/2 for the event to be below

the mean value. For such a forecast the difference to the observations in the cumulative

probability space is always 1/2, independent of whether the observations were above or

below the mean value. Hence the RPSl=2,cl is 1/4, whereas the RPSl=i,cl is 1/2.

In practice an ensemble system has only a finite ensemble size. Thus, the predicted
cumulative probabilities yi can only take on a set of discrete values. These probabilities

are (0, 1/m, 2/m,
..., (m-l)/m, 1) for an ensemble system with m members. For a 3-

member ensemble system these values are explicitly (0, 1/3, 2/3, 1). The mean RPSl=2,fc
is then (1/8)1 + (3/8)(2/3)2 + (3/8)(l/3)2 + (1/8)0 = (1/3), where the forecast probabilities

are weighted by the relative frequency of the occurrence. Evidently the squaring of the

cumulative measures gives an RPSl=2,fc that is larger than the expected reference value
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RPSl=2, cl of 1/4. As a consequence, the RPSSl=2 takes a negative value. In a general
formulation of the bias of a white noise climate forecast, each possible cumulative

probability value is weighted by the probability of occurrence that is given by the

binominal distribution. Thus, for a two class system the scores of the unskilled ensemble

forecast and the reference forecast are given by

1 m
\L 1 m

/ \L

z k=0 z k=\

(3.5)

whereas the score for the reference forecast is:

RPSL CL
JL

(3.6)

For L=2 the RPSl=2,fc is always larger than RPSl=2,cl Figure 3.4 shows the bias of the

RPSSl for different ensemble sizes and norms. The analytical bias is almost equal to the

bias in the white noise climate forecast (Fig. 3.1a). Finally note that for more than two

classes, the relative frequency of occurrence does not linearly increase, and equation (3.5)
and (3.6) increase in complexity. But the bias remains also for forecast systems which

have ensemble sizes that are an integer multiple of the categories (not shown).

(O
Q. -0 4

az.

L=1

L=4

10 20 30 40

Ensemble Size

Figure 3.4: The RPSSl, as a function of the ensemble size and different norms L for white

noise forecasts of two classes.
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For L=l the RPSl=i,fc of a 3-member ensemble system gives (1/8)1 + (3/8)(2/3) +

(3/8)(l/3) + (1/8)0 = 1/2. The outcome of RPSl=i,fc is exactly equal to the expected
reference value RPSl=i,cl (1/2) and the RPSSl=i is equal to zero. The analytical bias (Fig.

3.4) is zero, as expected. For higher orders of the norm the bias is even stronger. The

example illustrates that the negative bias in the standard definition of the RPSl=2 is

primarily a consequence of the squared measure used to quantify the forecast error in the

cumulated probability space. This discretization-cumulative-squaring error also occurs

for large ensemble sizes, but the negative bias is relatively small. However, for systems

with small ensemble sizes, the bias can reach values comparable to the skill of the system

and the score becomes meaningless.

Although the RPSSl=i is a skill score that can be used for systems with small ensemble

size it is handicapped by the matter that it is not strictly proper (i.e. the forecasted

probability values can be hedged towards values that are likely to give higher or equal

scores). Strictly proper scores discourage forecasters from hedging their forecasted

probabilities towards probabilities that are likely to score higher (Stephenson and Jolliffe

2003). To prove that the RPSl is not strictly proper, we calculate the expected score a

forecast yt would receive and find what forecast f yields the best score. Let Fj be the

cumulative probability for the event being forecasted defined as F =Y,Uf- The exPected

RPSL becomes (e.g. see Wilks, 1995):

e(Rpsl) = ±\fj(yj-i)l+(i-fj)yj (3.7)

If the score is strictly proper, then the score will be minimised if y, = f. To find the

value of yx that minimises E(RPSl), we take the partial derivative with respect to y (we

assume f to be constant) which gives:

dE(RPSL)
j

dy

For L=l (3.8) reduces to:

dE(RPSL_J

(3.8)

2>0. (3.9)
3y P=i

The partial derivative is never zero and the RPSl=i cannot be minimised. Thus the RPSl=i

and hence the RPSSl=i are not strictly proper. For L=2 the following result is reached:
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ÊÊU^-tW-F,)). (3.10)

which is zero for y, = f, and hence the RPSl=2 is strictly proper. For two classes, the

RPSl=2 is a special case of the Brier Score and has been shown to be strictly proper (for

example see Mason 2004).

In order to maintain the strictly proper characteristic of the RPSSl=2, the negative bias

needs to be removed without changing the norm of the skill. A straight forward way is to

introduce a discretization and squaring error in the reference forecast artificially. To do

so, we calculate the score of the reference forecast in (3.2) with random re-sampling of

the climatology, where the re-sample size is equal to the ensemble size. In this case the

de-biased RPSSl=2 becomes

^RPSL__2FCk
KPSSn^-^rl , (3.11)

Z^Z^^P^L=2,CL,k,l
k=\ 1=1

where q is the number of discrete re-samples of the reference forecasts. To ensure that the

climatology is fully represented, q must be chosen large enough. Since the reference

forecast now consists of an ensemble of the same size as the forecast ensemble, the

possible probabilities and the relative frequency of occurrence take on the same discrete

values as for the forecast system. This newly defined skill score (RPSSd) is zero for any

ensemble size and number of classes (Fig 3.1c, 3.2c). Furthermore, since the RPSl=2 is

strictly proper, the set of sub-samples in the denominator of (3.11) are strictly proper, too.

Therefore, the RPSSd is also proper and provides an adequate strategy to compare

ensemble systems with low numbers of ensemble size.

3.4. Application to Seasonal Forecasts

In order to see the benefit of the de-biased RPSSd of a real application the skill scores of

the ECWMF Seasonal Forecast System 2 are calculated. This system is an operational,

fully coupled Atmosphere Ocean GCM and is described in detail by Anderson et al.

(2003). The hindcast data analysed here consists of forecasts with 1-month lead time

(months 2 to 4) of the winter mean (DJF) 2 metre temperature (T2). A set of 40 ensemble

members is available for each year of the hindcast period 1987-2001. For further analysis
the forecasts are post-processed by removing a lead time dependent mean model drift

based on 15 years of hindcast climatology. The reference forecast is based on a Gaussian

fit to the ECMWF ERA40 Re-Analysis for the same period 1987-2001. This data set is

also used to define the edges of the three probability classes used.
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(a)

(b)

(c)

Figure 3.5: Grid point based (a) RPSSL=2 >(b) RPSSL=i and (c) RPSSd for winter mean (DJF)

near surface temperature forecasts based on the ECMWF Seasonal Forecast System 2. The

forecasts are based on November initialisation and cover the winters 1987/88 - 2001/2002.

An ensemble system with 40 members is used. The ±95 % confidence intervals are denoted

as thick plain (dotted) contours.

In Fig. 3.5a the grid point based RPSSl=2 is shown for the full set of 40 ensemble

members for T2. The overall picture of the RPSSl=2 is dominated by alternate patterns of

strong positive and negative skill scores. Negative skill scores are found in large areas

over



Chapter 3:. The Debiased Ranked Probability Skill Score
...

40

(a)

(b)

(c)

Figure 3.6: Same as Figure 3.5 but for an average of 30 simulations based on a random sub¬

set of 5 ensemble members.

Europe and positive skill scores over the Northern Atlantic Ocean, in the Northern part of

Scandinavia and at the East coast of America. In Fig. 3.5b the skill scores are shown for

the RPSSl=i. The figure shows the same regions of positive skill score over the Atlantic

and Northern Scandinavia as the RPSSl=2 However, regions of localised negative skill

score disappear over the continents. The RPSSd (Fig- 3.5c) shows similar results as the

RPSSl=2, which reflects that the RPSSd is equivalent for a large ensemble size.
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The sensitivity to small numbers of ensemble members is shown in Fig. 3.6. Here 30 sets

of forecasts are averaged, with each set consisting of five members, randomly re-sampled
from the 40 members ensemble. Due to the smaller ensemble size the confidence

intervals are wider than for 40 ensemble members. The resulting mean of the sub set of

the RPSSl=2 (Fig- 3.6a) shows distinct regions of positive skill scores. However, strong

negative skill scores cover most of the entire region. Although these negative areas are

not statistically significant, their magnitudes are comparable to the significant positive
values. The RPSSl=i (Fig. 3.6b) does not show these regional negative areas in the

RPSSl=2- The overall picture exhibits mainly significant positive areas in the Atlantic.

The values of the RPSSl=i based on 5 members are of the same order of magnitude as the

values based on 40 members (Fig. 3.5b) but the confidence intervals are wider. The

RPSSd for this set of ensemble members is illustrated in Fig. 3.6c. The RPSSd is

generally higher than the RPSSl=2 (Fig. 3.6a). The European and American continent, for

which strong negative skill scores are found for the RPSSl=2, are now mostly covered by
skill scores in the range of ±0.10. These are indications of the strong negative bias (see
section 3.3). However, single localised areas with strong negative skill scores still remain.

3.5. Signal-to-Noise Detection Problem

The examined strategies to calculate the ranked probability skill score allow to readdress

the question of how many ensemble members are required for a forecast system to detect

a climate anomaly of a known signal-to-noise ratio. In the white noise climate system the

signal-to-noise ratio is described by the mean shift in standardised units of a hypothetical
distribution of climate anomalies to climatological distribution. The procedure

corresponds to the one introduced by Kumar et al. (2001).

Fig. 3.7a) and c) show the skill scores (RPSSl=2 and RPSSd) as a function of the signal-
to-noise ratio. Skill scores for an ensemble system with 2, 5, 40 and 100 ensemble

members are shown. For large climate mean shifts, the skill scores are independent of

ensemble sizes. A clear difference is found for forecasts with small ensemble sizes and

small climate shifts. As expected from the discussion above, the RPSSl=2 has a negative
bias for small ensemble sizes. The RPSSd shows no negative skill for weak anomalies

and small ensemble sizes. The RPSSd is positive and irrespective of the ensemble size.

This is also found for the RPSSl=i (Fig.3.7b).

An ensemble forecast system with a given ensemble size and a given number of forecasts

has still a signal-to-noise detection limit. In our two strategies the signal-to-noise
detection limit can be described by the confidence intervals discussed above. In Fig.

3.7b), c) the vertical dashed lines indicate the 95 % confidence interval for the RPSSl=i

and the RPSSd for ensemble sizes 5 and 40, and a number of 15 forecasts. For this

hypothetical set up, comparable to the ECMWF hindcast system, a statistically significant
skill score can only be estimated for a signal-to-noise ratio larger than -0.3 (40 members)
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Figure 3.7: The (a) RPSSL=2> (b) RPSSL=i and (c) RPSSD as a function of a standardised

anomaly (signal-to-noise ratios, see text for details). Numbers denote ensemble size 2, 5, 40

and 100. The scores are based on three equiprobable classes. The vertical dashed lines in

panel (b, c) indicate the 95 % confidence intervals for 40 and 5 members, respectively.



Chapter 3:. The Debiased Ranked Probability Skill Score
...

43

-0.6 (5members), respectively. This value can be interpreted as the minimum ensemble

size required to achieve a positive skill score for a given signal-to-noise ratio (Kumar et

al. 2001).

To further investigate the origin of the negative bias, a decomposition of the RPSSl=2 and

RPSSd is carried out. The RPS can be decomposed into a reliability term and a resolution

term (for details see Hersbach 2000; Wilks 1995):

^S = \;ilNk(yk-ökY~i^Nk{ök-öy+o-{l-ö) (3.12)
W k=\ W k=\

where b~ is the relative frequency of the observations, o~k is the sub-sample relative

frequency and Nk the number of times each forecast is used in the collection of the

forecast being verified. The reliability score (first term) is a function of the squared
difference between the forecast probability and the observed frequency in the different

probability categories, while the resolution score (second term) is the average square

difference between the observed frequency in each probability category and the mean

frequency observed in the whole sample.

Since for the RPSl=2,cl the resolution and the reliability terms are zero, the skill score is

only described by the uncertainty term. From (3.12) the skill score can be written as:

UNC + A

Here A describes the difference between the RPSl=2,cl evaluated with the probabilities of

the re-samples and those defined by the probabilities of the full reference distribution.

Splitting up (3.13) a reliability skill score (RELSS) can be written as

RFT
RELSS = 1 ^E±_ (3 14)

UNC + A

and a resolution skill score (RESSS) and uncertainty skill score (UNCSS) as:

RESSS = (3.15)
UNC + A

UNC
UNCSS = (3.16)

UNC + A

In Fig. 3.8a) and d) the RELSSl=2 and RELSSd, respectively are plotted as a function of

the signal-to-noise ratio. The RELSSl=2 shows a strong dependence on the ensemble size.
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Figure 3.8: The (a) RELSSL=2, (b) RESSSL=2, (c) UNCSSL=2, (d) RELSSD, (e) RESSSD and (f)

UNCSSD as a function of a standardised anomaly. Numbers denote ensemble size 2, 5, 40

and 100.

For a weak signal-to-noise ratio, the scores range from zero reliability to perfect

reliability for a 2-member and 100-member ensemble system, respectively. The RELSSd

is still dependent on ensemble size for weak anomalies, but reveals substantially higher
values.
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In Fig 3.8b) and e) the results for the RESSSl=2 and RESSSd are shown. Whereas the

RESSSl=2 proves to be independent of the ensemble sizes and the signal-to-noise ratios,

the RESSSd is reduced for small ensemble sizes and strong anomalies. In Fig 3.8c) and f)
the UNCSSl=2 and UNCSSd are shown for varying ensemble sizes. Obviously for A=0,

which is the case for the RPSSl=2, the UNCSSl=2 is one for any ensemble size. The

UNCSSd, however, shows dependence on the ensemble size. For a 5-member ensemble

system the UNCSSd is reduced to a value of about 0.85. For the RPSSd the bias in the

RELSS is compensated by introducing ensemble size dependence in the resolution and

uncertainty term.

3.6. Conclusions

In this study the mechanics of the RPSSl are studied in the context of forecast systems

with small ensemble sizes and different norms L. In agreement with earlier studies, it is

shown that the standard calculation of the RPSSl=2 leads to a negative bias that can be

even larger than the expected skill of the forecast system itself. This negative bias is a

consequence of the squared measure used to quantify the forecast error in the cumulative

probability space. It is particularly large for small ensemble sizes. For higher orders of L

the bias is further increased.

Two strategies are introduced addressing the bias problem of the RPSSl=2- The bias can

be eliminated by either one of the two alternative scores. The first one is a proposed
modified version of the RPSl=2, which is based on the absolute difference (RPSl=i)
instead of the squared difference of the cumulative probabilities. This score is

comparable to the mean absolute error (MAE). The expected skill score is independent of

the ensemble size whereas the confidence intervals are related to the ensemble size and

the number of forecasts. However, the RPSSl=i is not strictly proper, which means that

the probabilities can be changed without impact on the score value. The second score

considered is the RPSSd, which represents a de-biased version of the standard RPSSl=2

The proposed modification involves a re-sampling of the climatology as a reference

forecast (RPSSd). It is shown that this method renders reasonable results even for

systems with small ensemble sizes and is strictly proper. A pure random climate forecast

is used to show that the RPSSl=i and RPSSd provide an unbiased estimate of the skill

score even for small ensemble sizes. For large ensemble sizes both skill measures are

comparable. Random noise forecasts form also the base to determine confidence

intervals.

To test the newly proposed scores, two examples are considered. First the operational

ECMWF Seasonal Forecast System 2 is used to quantify the skill of near surface winter

mean temperature forecasts with the RPSSl=i, RPSSl=2 and the RPSSd- It is shown that

the new skill scores yield increased values for the forecast system, in particular for small

ensemble sizes. Furthermore, the grid point based skill score structure is much more
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homogeneous and the occurrence of scattered negative values, as is the case with

RPSSl=2, is largely suppressed.

Second, the RPSSd and the RPSSl=i are used to find the minimum ensemble size

required to predict a given climate signal. Here a white noise climate system is used in

which the signal-to-noise ratio is described by the mean shift of a hypothetical
distribution of climate anomalies to the climatological distribution in standardised units.

By using a hypothetical set up comparable to the ECMWF hindcast system, statistically

significant skill scores can be anticipated for climate signal-to-noise ratios larger than

-0.3 (40 members) and -0.6 (5 members), respectively. These are similar results as found

by Kumar et al. (2001), but the statistical significance is now associated with confidence

intervals instead of the ensemble size.

In the context of the signal-to-noise detection problem, a decomposition of the quadratic

norms identifies the bias of the RPSSl=2 as a reliability problem, whereas the resolution is

unaffected by the ensemble size. A decomposition of the re-sampling strategy of the

RPSSd shows an improvement in the reliability for small ensemble sizes. However, this is

at the expense of the resolution skill score which is reduced. This seems more logical, as

in this framework the resolution should also be affected by the ensemble size.

It is argued that for ensemble systems with small ensemble sizes, a de-biased version of

the RPSSl=2 should be used to quantify the probabilistic skill of the system, either the

RPSSl=i or the RPSSd- Since the RPSSl=i proves not to be strictly proper we suggest a

preferable use of the RPSSd- But also other formulations could be considered which

address the forecasts to be a random guessing, as recently shown in a parallel study of

Mason (2004).

Finally, the use of these new skill scores is not restricted to Seasonal Forecast Systems,

but is likely to be beneficial for other applications such as climate prediction or short-

range limited area ensemble prediction systems (Marsagli et al. 2001). De-biased skill

scores are also desirable for comparison of multi-model ensemble systems with different

ensemble sizes (Müller et al. 2004).
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Chapter 4:

Probabilistic Seasonal Forecast of the European Climate

The aim of the present chapter is to provide an overview of the forecast skill on seasonal

time-scales for the European-Atlantic region. First, forecasts of large-scale domain 2m

temperatures are compared with emphasis on the tropics and the mid-latitude regions.
Since the tropics provide the source of a large fraction of seasonal to interannual climate

variability, a more detailed description of the forecast skill in the tropics is given. Second,

the seasonal forecasts are examined on grid-point scale. The ECMWF Seasonal Forecast

System 2 and the DEMETER system are used to investigate the forecast skill. Within

both systems a perfect model approach (PMA) is employed to quantify the potential

predictability of the seasonal climate.

4.1. Data and Methods

In this chapter the forecast skills are calculated with the RPSSd, which is described in

detail in chapter 3. The distribution of the reference forecast is defined by a Gaussian fit

to the observations. Three equiprobable classes are used. They are obtained from the

distribution of the reference forecasts. Yet, it must be noted that the forecasts and

reference forecasts are not cross-validated, which means that the actual forecasts and

observations are included when the underlying scores are evaluated. If only a small

number of forecasts and observations are used, the underlying scores might be strongly
influenced by the actual values. This in turn may produce scores which are more precise
than those for cross-validated forecasts and reference forecasts.

Three approaches are examined to define the forecast skill. First, the reference forecast is

based on all ERA40 observations. This attempt is denoted as the forecast approach (FA).

Second, the reference forecast is based on the ERA40 observations, but the forecasts are

defined in terms of a simple persistence model. The persistence model is defined as:

PDF(fFC(t0+I)) = afOBS(t0) + PDF(fOBS(t + I)-fOBS(t)) (3.1)

where fOBS (t0 ) is the observation at the start time t0 of the forecast, I the lead time, a the

autocorrelation coefficient and t denotes the index of all observations fOBS (/). This gives

a forecast distribution PDF(fFC (t0 +/)) for every start time and lead time that depends on
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the differences between the observations fOBS (t +1) and fOBS (t) for all t. In this general

form a can be adapted for any forecast time. For a =0 and large lead times the

distribution becomes the climatology. For a=\ (3.1) becomes a pure persistence

forecast. Here a=\ is used. This attempt is denoted as the probabilistic persistence

approach (PPA).

Third, the reference forecast is based on all single predicted ensemble members of the

model climate, and each single ensemble member is once treated as an observation. This

attempt is denoted as the perfect model approach (PMA). This approach removes the

bias, since the climatology is fully described by the model. The sample size is the length
of the hindcast climatology multiplied by the ensemble size.

The multi-model to be used in section 4.4 is constructed of all individual models of the

DEMETER system. The individual models are considered with regard to their own

climate. The multi-model distribution for each grid point is then constructed by merging
all model anomalies with equal weighting. Within the DEMETER system this gives 63

ensemble members at each grid point. Other methods, such as a Bayesian approach or a

linear combination, for which the model anomalies have different weightings exist but

are not applied in this thesis (Mason and Mimmack 2002, Rajagopalan et al. 2002,

Coelho et al. 2003, Metzger et al. 2004).

In this chapter the forecast systems have different ensemble sizes. Furthermore, different

starting months and temporal averages are considered. Table 4-1 gives a detailed overview

of the forecast systems, starting months, ensemble and sample sizes and the 95 %

confidence level of the RPSSd which are used in the corresponding sections.

Forecast

System
Start Months Ensemble Size

Sample
Size

95%

Confidence

Intervals

Section

4.2

ECMWF

System 2
Jan - Dec 5

FA: 180 ±0.07

FA&

PPA: 15
±0.19

Section

4.3

ECMWF

System 2
May & Nov 40

FA: 15 ±0.08

PMA: 600 ±0.02

Section

4.4

DEMETER

System

(7 models)

Nov

Single Model 9
FA: 15

PMA: 135

±0.15

±0.03

Multi Model 63
FA: 15

PMA: 945

±0.05

±0.01

Table 4-1: Overview of the Seasonal Forecast Systems, start months, ensemble size, sample
size and 95 % confidence levels of the RPSSd which are used in the different sections.
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4.2. Large-Scale Domain Averages

Time Series

First the time-series for the large-scale domain averages are examined. In Figure 4-1 the

monthly mean 2m temperatures are shown for the global (a) and tropical average (b). The

global mean shows a close correspondence between the ensemble mean and the

observations. This holds especially for lead time 1 month (red). With increasing lead time

the forecasts are further displaced from the observations. However, the variability is

captured at all lead times. The tropical mean shows that much of the variability has a

tropical origin. It can be seen that the time-series are dominated by the interannual

variability of ENSO, with two extra-ordinary boreal winters in 1987/88 and in 1997/98.

The ECMWF forecast system 2 is capable of predicting the strong warm events and the

La Nina year 1988. However, with increasing lead times the forecasted amplitudes are

smaller than the observations. Also the onsets are forecasted with some delay. For lead

time 5 months, for example, the maximum amplitude of the 1987/88 event is predicted at

least two months too late and by about one third too weak. The coherence between

forecasts during weak ENSO episodes is marginal.

In Figure 4-2 the time series for the average northern hemisphere (a) and European (b)
2m temperature are shown. There is less coherence between the ensemble mean and the

observations in the northern hemisphere than in the tropics. Although forecasts with lead

time 1 month have amplitudes comparable to the observations, longer lead times are

characterised by a strongly damped signal and a clear tendency towards anomalies with

(a) (b)

-o ao - - -o bo -

19BB 1990 1992 1994 1996 199B 2000 19BB 1990 1992 1994 1996 199B 2000

Figure 4-1: Global (a) and tropical average (b) of monthly 2m temperatures of the

observations (black) and predicted ensemble mean (colours). The tropical average is

defined as the area between 180°W to 180°E and 5°S to 5°. Shown are the ensemble mean

for lead time 1 (red), 3 (green) and 5 (blue) and the ± 1 standard deviation of the

observations (horizontal lines).
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Figure 4-2: Same as Figure 4-1 but for the northern hemispheric (a) and European average

(b). The northern hemisphere (European) region covers the area extending from 180°E-

180°W and 20°N-90°N (10°W-60°E and 35°N-75°N).

zero amplitude. The same is found for the European mean for lead times greater than 1

month. However, it must be pointed out that for lead time 1 month most of the intense

events (>lsd) are captured by the forecasts.

Correlation Coefficients and RPSSd

The correlation between the ensemble mean and the observations of the four regions are

shown in Figure 4-3. The correlation for the tropics shows a maximum of about 0.95 for

lead time 0 months and decreases systematically to a value of about 0.71 for lead time 5

months. For this sample size a correlation of about 0.15 is significant at the 95 %

confidence level (assuming a Gaussian distribution). The correlation coefficients of the

global mean are generally smaller than in the tropics. A correlation of about 0.77 is found

for lead time 0 months which decreases to about 0.52 for lead time 5 months.

As expected the correlation coefficients of the northern hemisphere and European means

are much lower than those of the tropics. For the northern hemispheric mean we find a

decrease of the correlation coefficients from 0.76 for lead time 0 months, to 0.23 for lead

time 5 months. As for the European domain, the results are further reduced ranging from

0.66 for lead time 0 months, to 0.22 for lead time 5 months.

The forecasts are next examined with the RPSSd- The reference forecast consists of all

observations for the whole period which gives a sample size of 180 (see also table 4.1).
The RPSSd of the spatial averaged monthly 2m temperatures are displayed in Figure 4-4.

The highest skills are found in the tropical region with about 70 % for lead time 0 months

and 55 % for lead time 1 month. Although a strong reduction in skill is found with
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Figure 4-3: The correlation between predicted ensemble mean and observations of monthly
2m temperatures for the period 1987-2001. The different lines denote tropical average (grey

circle), global average (black circle), NH average (black solid) and European average (grey

solid).

increasing lead time, there still is a positive skill score up to lead time 5 months. The

global mean 2m temperature skill scores show a smaller reduction ranging from 37 % for

lead time 0 months, to 20 % for lead time 5 months. The probabilistic skill score for the

northern hemisphere is also found to be positive for all the lead times with values of

about 42 % and 29 % for lead time 0 months and 1 month, respectively. The results for

-e- Global

Tropics
— NH

Europe

2 3 4

Lead Time [Months]

Figure 4-4: Same as Figure 4-3 but for the RPSSD.
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lead time 5 months show only a small benefit of about 10 %. If the European domain is

considered, the skill scores are further reduced ranging from 16 % for lead time 0 months

to 1 % for lead time 5 months. These results are in compliance with other studies (Palmer
and Anderson 1994, Pavan and Doblas-Reyes 2000). In a group of multi-model seasonal

hindcast experiments Pavan and Doblas-Reyes (2000), demonstrate similar results for

meteorological fields such as the 500hPa geopotential and the total precipitation.

Interestingly, the skill scores of the European domain show a minimum for lead time 1

month and have a small increase up to lead time 4 months. One possible explanation for

this increase could be a delay of the predictive signal from the ocean to the continent.

This would be consistent with the skills of other domains where ocean grid points are

included. On the other hand the minimum at lead time 1 month could be due to a small

spread of the forecast distribution. In such a case there are less ensemble members which

are closer to the observation, as is the case for lead times greater than 1 month, where the

forecast spread is wider.

Forecast Approach (FA) and Probabilistic Persistence Approach (PPA)

A frequently asked question concerns the benefit of expensive complex models when

cheaper statistical methods can be considered. Recently, Landsea and Knaff (2000)
examined the prediction performance of El Nino 1997/98 for twelve statistical and

dynamical models, ranging from simple analogue methods to more complex coupled

atmosphere-ocean model forecasts. They compare these models to an ENSO persistence
method (ENSO-CLIPER) which is utilised as a baseline for the determination of the skill

score. Based on this single but strong ENSO event, they find no skill for any of the

models 1 to 3 seasons ahead, which suggests that the best estimate is performed by the

persistence method.

More generally van Oldenborgh et al. (2003) compare the ECMWF Seasonal Forecast

System 1 and 2 against a statistical and a persistence models of the form of Landsea and

Knaff (2000) for the period 1987-2001. For the monthly Nino3 index they show that the

ECMWF systems provide anomaly correlation coefficients (ACC) of about r>0.7

throughout the year. In winter the ACCs of the two systems amount to about r~0.9. The

statistical methods perform similar to the dynamical models in the winter months.

However, in the summer months the skill scores are strongly reduced. Among all models,

the smallest skill score is achieved by the persistence model in the summer months,

where the ACCs amount to about r~0.1 and r~0.2 for June and July, respectively.

A comparison of the skill scores resulting from the probabilistic persistence approach

(PPA) with the skill scores of the forecast approach (FA) provides an alternative method

to distinguish whether or not a forecast based on persistence alone is sufficient. Figure
4-5 summarises the results for the Nino3.4 region for lead time 1, 3 and 5 months.
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Figure 4-5: The RPSSD of the tropical 2m temperature average for the ECMWF system 2

for different initial times (calendar months). The colours indicate different lead times (see

inlet). Shown are the skills for (a) the FA and (b) the PPA. The inlet shows the

corresponding average over all calendar months. The reference forecast is based on the

ERA40 re-analysis for the period 1987-2001. Skill scores above 0.19 are statistical

significant at the 95 % confidence level.

Obviously, there is a clear seasonal cycle in forecast skill with higher skill scores in

winter and lower skill scores in summer. Statistically significant positive skill scores are

found for all calendar months for the PPA for lead time 1 month and for the FA for lead

time 1 and 3 months. For lead time 3 months the PPA has non-significant skill scores in

June and July. For lead time 5 the PPA has a longer period with non-significant skill

scores ranging from April to October. For this lead time the FA has only a non-significant
skill score in June. The averages of the skill scores through all calendar months are

statistically significant for all lead times. The FA performs 10 % to 17 % higher than the

PPA.

Finally, Figure 4-6 shows the FA and PPA for the European domain. The skill scores

have a high variation from month to month and are mostly not significant. Only in

summer there is a tendency towards the positive skill scores for the FA and PPA.

However, the interpretation of the strong positive skill scores requires careful

considerations, because the forecasts and reference forecasts are not cross-validated. The

averages over all calendar months are not significant for the FA and PPA, respectively.
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Figure 4-6: Same as Figure 4-5 but for the European average.

In summary the ECMWF Seasonal Forecast System 2 has a high forecast skill in the

tropics, even for lead time 5 months. The skill, however, is seasonally dependent and

lowest in summertime. A prediction based on observations alone using a probabilistic

persistence method (PPA) provides an alternative for producing forecasts in the Nino3.4

region. For the tropics, the forecast benefit is slightly smaller than with system 2. For the

extra-tropical mean the skill is generally lower, but highest in summer.

4.3. ECMWF Seasonal Forecast System 2 Grid-Point Skill

The large-scale mean quantities described in the last section provide an identification of

the potential predictability in pre-defined areas. Since atmospheric processes are

organised in locally and temporally coherent structures, a too large definition of the

region of interest can lead to a cancellation of the predicted signal. Furthermore, user

specific needs are to a large extent driven by the requirement of local station-based

information. In this section the seasonal prediction skill in the Euro-Atlantic sector is

investigated on model grid-point scale.

Forecast Approach (FA)

All results presented in this and section 4.3 are based on the same probabilistic measure

as in the last subsection, but applied on 3 monthly mean anomalies (for details see also
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Table 4-1). In Figure 4-7 the RPSSD is shown for the 2m temperature of the ECMWF

system 2 for winter (a) and summer (b). The skill scores for the DJF mean shows distinct

areas of enhanced skill score with emphasis over the ocean. Several local maxima are

found off the coast of Newfoundland and the sub-tropical Atlantic. Some significant

positive skill scores are located in the northern part of Canada and the European Polar

Sea. For the European continent, however, no significantly positive skill is found. Instead

the figure is covered by localised regions of strong negative skill. However, they are

scattered all over and their occurrence may be artificial due to the limited hindcast period
of 15 years (see below).

In JJA (Figure 4-7b) the maximum skill score in the central North Atlantic is aligned
towards the Labrador Sea and is increased in magnitude, whereas the sub-tropical

positive skill at the African coast is reduced. Central and southern Europe (and the

Mediterranean Sea) is now covered by a positive skill of about 25 %. Strong negative
skill scores are found over northern Europe as well as scattered over the subtropical
Atlantic and the Middle East. The average skill score over the entire domain is about 5 %

higher than in the winter season.

(a) (b)
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Figure 4-7: The RPSSd of the 2m temperatures (shadings, 5 % intervals) for the FA. Shown

are the seasons DJF (a) and JJA (b) for lead time 1 month. The contour lines show the

upper (solid) and lower (dotted) 95 % confidence levels. The RPSSD at each grid point is

smoothed with the adjoining neighbouring skill scores.
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Figure 4-8: Same as Figure 4-7 but for the PMA.

Perfect Model Approach (PMA)

In Figure 4-8 the skill scores for the 2m temperature for the Euro-Atlantic sector are

shown for the PMA. Figure 4-8a shows the skill scores for DJF. The picture is covered by

positive skill scores over the entire domain. The distinct maxima which are achieved in

the FA, are now connected to a large-scale, horseshoe-like pattern with magnitudes up to

35 %. The extra-tropical land masses are mostly covered by small but significantly

positive skill scores of 5 %-15 %. Only the central European continent does not show

significantly positive skill scores. Finally, the southern part of the US is covered by a

maximum of about 40 % with strong linkage to the tropical Pacific (not shown). Please

note that the 95 % significance levels are now closer to zero as in the FA because the

sample size is increased (see Table 4-1).
In JJA (Figure 4-8b) the horseshoe-like pattern of the skill score is split into a local

maximum further aligned to the Labrador Sea (max. 45 %) and a local maximum which

is shifted to the sub-tropical Atlantic. The Mediterranean Sea is also covered by relative

high skill scores with values up to 25 %.

4.4. DEMETER Multi-Model Grid-Point Skill

Forecast Approach (FA)

The RPSSd for the winter mean 2m temperatures are shown for the individual models of

the DEMETER system in Figure 4-9. Despite the large local variability of the skill scores

in the individual models, there are recurrent patterns of positive and negative signs.

Regions with recurrent positive skill scores are found off the west coast of Africa and
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Figure 4-9 The RPSSD of the DJF mean 2m temperatures of the DEMETER models for the

FA and lead time 1 month (shadings, 5 % intervals). The models from top-left to bottom

right are: (a) SMPI, (b) UKMO, (c) SCWF, (d) CRFC, (e) LODY, (f) SCNR, (g) CNRM.
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Spain, respectively, and off the coast of Newfoundland. In some models such as the

SCWF the former is elongated up to the British Isle. Recurrent areas of negative skill

scores are found off the US coast at about 30°-50°N latitude. The average of the models'

skill score at each grid point is illustrated in (Figure 4-10b). Significantly positive skill

scores are located over the eastern sub-tropical Atlantic (up to 25 %) and small regions of

Canada and the European Polar Sea. Negative results are found off the US coast at about

40°N (up to -30 %) and over the North Atlantic at about 60°N (up to -25 %). Over the

European continent no significant skill scores were found.

The results of the multi-model show regions with positive skills as described above

(Figure 4-10a). Strong positive skill scores are found over north-eastern Canada (up to

35%), large areas of western Africa and the sub-tropical Atlantic (up to 20 %), the

Middle East (up to 15 %) and the polar sea (up to 25 %). Negative skill scores are located

over the western sub-tropical Atlantic, Greenland and northern Europe (up to -20 %). The

average of the multi-model skill over the entire domain is about 3 % higher than the

average over the mean of all individual models. However, the difference of the skill

scores between the multi-model and the average of the models (not shown) varies locally.
It provides a major improvement of the multi-model in the north-western Atlantic and

Canada (+25 %), but a degradation in the sub-tropics (-25 %) and northern Europe

(-15%).

Perfect Model Approach (PMA)

Finally, the PMA is applied to the DEMETER system. Figure 4-11 shows the RPSSD for

the PMA for all individual models. As expected, there is a high variation in the

magnitude of the skill scores. However, as in the FA, there are some recurrent patterns.

(a) (b)
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Figure 4-10: The RPSSd of the DJF mean 2m temperature of the multi-model (a) and the

single-models' average (b). Shown are the skill scores for the FA and lead time 1 month.

Shadings denote 5 % intervals.
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Figure 4-11: Same as Figure 4-9 but for the PMA. The models from top-left to bottom right
are: (a) SMPI, (b) UKMO, (c) SCWF, (d) CRFC, (e) LODY, (f) SCNR, (g) CNRM.
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Similar to the FA there is a tongue of positive skill score from the tropics along the west

coast of Africa and Spain, respectively. Most models also provide a high degree of

forecast skill in the mid-latitude Atlantic. However, their structures are less clear and

mostly dominated by small localised maxima. Most obvious is the localised maximum in

the region where the Gulf Stream leaves the American coast. Over the European

continent skill scores with at least 10 % in magnitude are found in all models. Over the

American continent the models show some degree of potential predictability. In particular

over Canada almost all models provide skill scores of about 15 % and higher. But

positive forecast skill scores up to 40 % are found over the south-eastern US. Some

models such as the CNRM have exhausting skill over the Polar Sea and the northern

American continent.

The average of all models' skill scores at each grid point is shown in Figure 4-12. The

average identifies the above described regions of enhanced forecast skill. The high skill

scores are found in local regions of the Atlantic basin and partly over Canada. The

European and African land masses are covered by skill scores of less than 10 %. It must

be noted that for this figure the mean at each grid point is estimated from a sample of

only 7 skill scores and hence local maxima are affected by single models. Furthermore,

the interpretation of such local maxima requires careful considerations, because the

underlying scores are not calculated with cross-validated forecasts and reference

forecasts.

-1 -0.5 -0.4 -0.3 -0.3 -0.1 0 0.1 0.3 0.3

Figure 4-12: Same as Figure 4-10 but for the single models' average.
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Chapter 5:

Probabilistic Seasonal Prediction of the Winter North

Atlantic Oscillation and its Impact on Near Surface

Temperature9

Müller, W. A., C. Appenzeller and C. Schär10

Abstract:

The North Atlantic Oscillation (NAO) is the major winter climate mode describing about

one third of the interannual variability of the upper-level flow in the Atlantic European
mid latitudes. It provides a statistically well-defined pattern to study the predictability of

the European winter climate. In this paper the predictability of the NAO and the

associated surface temperature variations are considered using a dynamical prediction

approach. Two state-of-the-art coupled atmosphere-ocean ensemble forecast systems are

used, namely the Seasonal Forecast System 2 from the European Centre for Medium

Range Weather Forecast (ECMWF) and the multi-model system developed within the

joint European project DEMETER (Development of a European Multi-Model Ensemble

Prediction System for Seasonal to Interannual Prediction). The predictability is defined in

probabilistic space using the de-biased ranked probability skill score with adapted
discretization (RPSSd). The potential predictability of the NAO and its impact are also

investigated in a perfect model approach, where each ensemble member is used once as

"observation". This approach assumes that the climate system is fully represented by the

model physics.

Using the perfect model approach for the period 1959-2001, it is shown, that the mean

winter NAO index is potentially predictable with a lead time of one month (i.e. from

November 1st). The prediction benefit is rather small (6 % skill relative to a reference

climatology) but statistically significant. A similar conclusion holds for near surface

temperature variability related to the NAO. Again the potential benefit is small (5 %) but

statistically significant. Using the forecast approach the NAO skill is not statistically

significant for the period 1959-2001, while for the period 1987-2001 the skill is

surprisingly large (15 % relative to a climate prediction). Furthermore a weak relation

between the strength of the NAO amplitude and the skill of the NAO is found. This

contrasts with El Nino/ Southern Oscillation (ENSO) variability where the forecast skill

is strongly amplitude dependent. In general, robust results are only achieved if the

sensitivity with respect to the sample size (both the ensemble size and length of the

period) is correctly taken into account.
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5.1. Introduction

On seasonal to interannual timescales the North Atlantic Oscillation (NAO) provides the

major mode of natural winter climate variability for the Atlantic European region. The

NAO is historically described by the NAO index, a normalised sea level pressure

difference between the Azores high and the Iceland low. Changes of the phases of the

NAO index are accompanied by a modulation of location and strength of the storm tracks

and synoptic eddy disturbances (Rogers 1997). Changes in storm track activity and the

associated influence on the transport of atmospheric heat and moisture are closely linked

to changes in regional winter temperature and precipitation (van Loon and Rogers 1978,

Lamb and Peppier 1987, Cayan 1992, Appenzeller et al. 1998). A positive/negative phase
of the NAO index is associated with a stronger/weaker than normal mean westerly flow

and a pronounced warm/cold air advection towards northern Europe (for details see

Hurrell 2003). Such climate anomalies have a major impact on social, economic and

ecological sectors (see Marshall et al. 2001, Drinkwater et al. 2003, Mysterud et al. 2003,

Straile et al. 2003). For example the energy consumption in Northern Europe is highly
correlated to temperature variations related to NAO variability (Hurrell et al. 2003).

Hence, a successful prediction of the climate variations in these regions would be

beneficial for many applications.

The prediction of the NAO, however, is limited by the intrinsic chaotic nature of the

atmosphere-ocean system. Small uncertainties in the initial conditions and model

formulation have a strong impact on the seasonal predictability. Since the initial

conditions are always faced with some observational inaccuracies, multiple integrations
with different starting values are used to import these uncertainties into the forecasts. The

predicted values are probabilistic in nature and allow a proper estimate of the level of

uncertainty. Such ensemble prediction systems have proven to be successful in increasing
the prediction skill for various applications (Palmer and Anderson 1994, Stern and

Miyakoda 1995).

The reduction of the full set of the governing equations on a truncated model grid

inevitably leads to impreciseness. This led to the idea of combining several models into a

multi-model ensemble system (Tracton and Kalnay 1993, Krishnamurti et al. 1999,

Kharin and Zwiers 2002) where the uncertainties due to initial conditions and model

formulations are accounted for. The improved forecast performance by multi-model

formulations has been shown for medium-range forecast (Evans et al. 2000, Graham et al.

2000) as well as for seasonal forecast (Palmer and Shukla 2000, Shukla et al. 2000,

Palmer et al. 2004). Among others the aim of such a multi-model system, is to enhance

the reliability and finally the predictive skill of the forecast system. Multi-model systems

were developed under the PROVOST (Prediction of Climate Variations on Seasonal to

Interannual Timescales) project (Palmer and Shukla 2000) and currently under the

DEMETER (Development of a European Multi-Model Ensemble Prediction System for
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Seasonal to Interannual Prediction) project (Palmer et al. 2004). Within the PROVOST,

for example, the probabilistic skill of the multi-model winter mean precipitation and mid-

troposphere geopotential height prediction over the northern hemisphere was found to be

generally higher than that of any single model (Doblas-Reyes et al. 2000).

The NAO provides a statistically well-defined pattern to study winter climate predictions.
It is the aim of this paper to quantify the predictability of the winter NAO and its impact

onto near surface temperature taking into account various aspects of uncertainty. The

results will allow for the elucidation of two questions: (I) How well can current state-of-

the-art seasonal forecast-systems predict this major European climate mode? (II) Is the

NAO itself predictable at all; and if so to what extent?

A first attempt to simulate the NAO on seasonal timescales with dynamical models has

been performed within the PROVOST project (Doblas-Reyes and Stephenson 2003). In

contrast to PROVOST, we use coupled atmosphere-ocean modelling systems to ensure

the linkage between the two media that differ in their inherent time scales. One is the

ECMWF operational Seasonal Forecast System 2 (Anderson et al. 2003), the second is

the multi-model ensemble system DEMETER (Palmer et al. 2004). Special attention is

paid to the skill in the framework of the limited available ensemble size. Within the

DEMETER project several models with 43 years of seasonal hindcast climatology are

available. Together with the long database and a perfect model scenario we provide a

robust estimate of the winter mean predictability in the mid latitudes. The data and

methods are introduced in section 5.2. An assessment of prediction skill for the NAO

with single and multi-models is given in section 5.3. In section 5.4 we provide a skill

assessment for predictions of NAO impact on temperature. A concluding discussion is

given in section 5.5.

5.2. Data and Methods

Data

Retrospective forecast data of the ECMWF Seasonal Forecast System 2 and the multi-

model DEMETER system were used. The observations stem from the ERA40 Re-

Analysis Project11.

All forecasting systems consist of an ensemble of coupled Atmosphere-Ocean

integrations. The atmospheric component of System 2 is the ECMWF IFS model

version23r4 with 40 vertical levels and reduced horizontal resolution of a T95L40 grid.

http //www ecmwf mt/research/era
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System Name Hindcast Period
# of Ensembles and

Start Months

Sample Size in

Perfect Model

Approach (PMA)

Operational
ECMWF System 2

1987-2001
40 (Nov)

5 (Sep, Oct, Dec)

600

75

DEMETER System 1987-2001

Single-Model 9

Multi-Model 7x9

(all Nov)

135

945

ECMWF System
from DEMETER

1959-2001

Single-Model 9

Multi-Model 3x9

(all Nov)

387

1134

Table 5.1: Overview of the applied models, their hindcast period and sample size.

The ocean component is the HOPE ( Hamburg Ocean Primitive Equation Model )
version 2. A set of hindcasts from system 2 are available for the 15-year period. The

hindcasts start at the first of each month and are available in 5-member ensembles except

for May and November. Here 40-member ensembles are available. The ensembles are

constructed by combining 5 ocean analysis with sea surface temperature perturbations
and stochastic physics. We use the term 'lead time' to distinguish between different

integration times (i.e. a seasonal forecast with lead time 1 month means e.g. that we

consider a forecast for the winter period December-January-February (DJF) that starts on

the first of November). For further details on the models see Anderson et al. (2003).

The DEMETER system consists of a set of 7 atmosphere-oceans models. The

contributing partners are CERFACS (CRFC), ECMWF (SCWF), INGV (SCNR),
LODYC (LODY), MPI (SMPI), MeteoFrance (CNRM) and MetOffice (UKMO). The

horizontal resolution of the models varies from T42L19 to T95L40 in the atmospheric

component. For further details see Palmer et al. (2004)12. We use the abbreviations in

brackets for the models of each organisation. Each model is initialised with 9 ensemble

members for each season. We refer to all models for the period of 1987 to 2001 and to

the individual models (SCWF, UKMO, CRFC) for the period 1959-2001 (see Table 5.1

for details). The maximum forecast period is 6 months for all integrations.

The predictions were validated with ERA40 Re-Analysis data as observations. Two

variables have been considered for verifying the forecasts. Monthly mean geopotential

height at 500hPa (0500) was used to analyze the major mode of variability. The monthly

http //www ecmwf mt/research/demeter/general/docmodel/mdex html
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mean 2m temperature was considered as near surface climate impact parameter. We

focus on the DJF mean climate for the North Atlantic region (100W-60E, 20N-80N).

Methods

The NAO was defined using an empirical orthogonal functions (EOF) analysis of the

observed and modelled winter mean O500. The field variables were weighted by the

cosine of the latitude. The EOF analysis for the individual models were performed using
all ensemble members merged into one single time series, providing a long sample

climatology (number of ensemble members times the hindcast period, see Table 5.1). The

observed climate variability was analysed using the ERA40 winter mean period 1959/60-

2000/01. We have chosen the longer period for the observations to ensure statistically

significance following the criterion of North et al. (1982). The field variables of the

observations and all ensemble members were then regressed to the corresponding EOF-

patterns. The resulting correlation coefficients were finally normalised. This produced the

loading of the principal components of each ensemble member and the observations and

will be denoted modelled NAO index and observed NAO index, respectively.

The impact on the European winter mean temperature was defined by a singular value

decomposition (SVD) analysis (Bretherton et al. 1992). We used the cross-covariance

matrix of the two scalar fields of 2m temperature and 0500. The resulting eigenvectors

were denoted left (2m temperature) and right (geopotential) singular vectors. The

magnitudes of eigenvalues were quantified with the squared covariance fraction (SCF).
The strength of the coupling of the two fields was measured with the reconstructed

variance fraction (RSCF) where the SCF was weighted with the homogeneous correlation

of the left and right expansion coefficients (Widmann et al. 2003). The field variables

were regressed with their corresponding singular vectors. For application perspective the

singular vectors are prior multiplied by the standard deviations of the scalar fields

(Appenzeller 2000). The resulting time series of the coefficients were denoted as

modelled and observed impact index. The correlation between the observations and the

ensemble median NAO and NAO-impact index were quantified with the Spearmen

correlation coefficients. Statistical significance is shown with the corresponding p-value.

To obtain a multi-model NAO index, each model of the DEMETER project was used to

produce an ensemble of NAO indices. Since the component models will each have a

different representation of the NAO variability, the multi-model NAO indices were

obtained collecting all models' NAO indices into one distribution. The same was done for

the multi-model NAO-temperature-impact indices where the multi-model distribution

was governed by the models' expansion coefficients (for the 2m temperature). This

method inhibits, that the multi-model NAO indices and NAO-temperature-impact

indices, respectively are dominated by one single model.
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All ensemble prediction systems used here have an implicit measure of uncertainty
introduced by the initial conditions (Anderson et al. 2003, Palmer et al. 2004). In these

systems the predicted values are probabilistic in nature and hence the verification

procedure requires a probabilistic skill measure. There is no general agreement on the

best single skill. Widely used scores are Brier scores, relative operating characteristics

(ROC), linear error in probability space (LEPS), or ranked probability skill score (RPSS)

(Swets 1973; Mason 1982; Ward and Folland 1991; Stephenson and Jolliffe 2003; Wilks

1995). The choice depends on the particular application considered or the forecast system

used. In this paper we focussed on the probabilistic forecast which includes the entire

shape of the probability distribution. We used the ranked probability score (RPS) but with

an adapted discretization of the climatological probabilities (see below). The standard

RPS is defined as RPS =y^'^ikiRPSk where N is the number of forecasts, k is the

forecast index and

^=ifc-°,) (5.1)

represents the mean square error of the cumulated probabilities of the forecast relative to

the observations. Here J denotes the total number of classes. If not explicitly stated we

use three equiprobable classes. The cumulative probabilities of the forecasts Yj and the

observations Oj are defined as Y} =^li_iyl and 0} =^!_1o,, where y; and o; are the

probability of the forecast and observation, respectively, of class i. The cumulative

probability of the observation becomes one for the observations lying in the

corresponding and following classes. The RPSk is zero in case of a perfect forecast (i.e.
all ensemble members correctly predict the event) and positive otherwise. The skill

calculation is based on the comparison of the forecast score (RPSfc) to a reference

forecast score (RPSref) relative to a perfect forecast. In this study the reference forecast

is given by the observed climatology (RPSref = RPScl)

However, since a forecast system generates only discrete probability values the

probabilities of the reference forecast also needs to be calculated with discrete probability
values. This was done by choosing many random samples out of the climatological

distribution, with their size equal to the number of ensemble members. For details see

Müller et al. (2004). Here a re-sampling method is used by returning the selected

climatological values into the original distribution. After summation the RPSS with

adapted climatology (RPSSd) becomes:

4lRPSFCk
RPSSD=\-^q (5.2)

YLRpsCLkl
k=\ l=\

where q is the number of randomly chosen climatological sub-samples. The so-defined

de-biased RPSSD is free of the systematic bias of the RPSS (Müller et al. 2004). For a
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perfect forecast the RPSSd is one and zero values indicate no benefit against the

reference forecast.

The RPSSd values at the 95 % confidence level were calculated using a Monte Carlo

approach and differ in ensemble size and forecast length. The boundaries of the classes of

the forecast and reference forecast distribution were obtained from the tertiles of the full

distribution of the climate forecast (i.e. by rank ordering of the NAO index and NAO

impact index, respectively, and defining boundaries that separate the tertiles). If not

explicitly stated otherwise we use this method. A more realistic situation was achieved by

excluding the forecasted value from the climatology for each single forecast.

When using the operational ECMWF Seasonal Forecast System 2 in a forecast approach
the database consists of only 15 winter seasons (FA15). To obtain a robust estimate of the

winter climate predictability a larger sample size is desirable. In this paper two ways

were investigated to enlarge the sample. In a first attempt we used the extended

operational system 2 model data base from the DEMETER project, giving a sample size

of 43 years. A forecast approach for this period is denoted as FA43. The second attempt

was performed in terms of a perfect model approach (PMA). In this approach each

ensemble member was considered once as the "observation" and not as member of the

forecast distribution. This reduces the number of ensemble members by one, but

including the "observation" would lead to an artificially high skill that is dependent on

the ensemble size. In a synthetic white noise climate model with an expected skill of zero

(see also Müller et al. 2004) the difference can be quantified. For a 5-member ensemble

this amounts to about 25 %. The PMA substantially increases the sample size with

respect to the number of ensemble members and hindcasts (see table 5.1 for details).

(a) (b)

Figure 5.1: The first EOF of the winter (DJF) mean geopotential of (a) the observed

atmosphere and (b) the ECMWF Seasonal Forecast System 2 with lead time 1 month. This

mode explains 37 % and 30 %, respectively, of the total variance. The observed

climatology is based on ERA40 data for the period 1959-2001 and the model climatology
on the period 1987-2001 times the number of ensemble members (40x15). The isolines

depict anomalies of O500, with an interval of 10hPa. Dashed lines refer to negative values.
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5.3. Probabilistic Prediction of the NAO

Single Model Approach

The primary mode of the northern hemisphere seasonal winter climate variability in the

observed data is displayed in Fig. 5.1a. The figure shows the characteristic dipole of the

NAO with an anomalous low over Iceland and a high over the central Atlantic. This

significant mode explains 37 % of the total variance. The first mode in the operational
ECMWF System 2 with lead time 1 month is shown in Fig. 5.1b. This mode explains

30% of the total variance. The overall structure is comparable to the observations but the

amplitude is damped. For all lead times the modelled NAO is the primary mode of the

forecast data. The explained variances are displayed in the first line of Table 5.2. Figure
5.2 shows the observed and modelled NAO index for different lead times. For lead time 0

b)

1987/88 1990/91 1993/94 1996/97 1999/00

Winter Mean (DJF)

C)

1987/88 1990/91 1993/94 1996/97 1999/00

Winter Mean (DJF)

d)

1987/88 1990/91 1993/94 1996/97 1999/00

Winter Mean (DJF)

1987/88 1990/91 1993/94 1996/97

Winter Mean (DJF)

1999/00

Figure 5.2: The observed NAO index (black lines) and the distribution of the NAO index

modelled by the ECMWF Seasonal Forecast System 2 for (a) lead time 0 months, (b) 1

month, (c) 2 months and (d) 3 months. The grey lines show the ensemble median. The

boxes in (b) are divided into quartiles. Dashed vertical lines denote the upper and lower

quartiles. Note that there are 5 ensemble members in (a), (c) and (d), while there are 40

ensemble members in (b).
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months (Fig 5.2a) the model NAO variability is similar to the observed NAO index. The

correlation coefficients between the ensemble median NAO-index and the observations

amount to 0.56 (p-value 0.03). However, these results reflect a strong contribution from

relatively high predictability at a short-range to medium-range forecast. In Fig.5.2b the

results for lead time 1 month are shown. The spread is much larger than for lead time 0

months, which is also due to the increased number of ensemble members (40). Obviously
there is a lower variability in the ensemble mean NAO index than for lead time 0 months.

However, the ensemble mean NAO index mostly follows the observations and a

correlation coefficient with a statistically significant value of 0.76 (p-value 0.02) is

found. For the longer integration periods (Figs 5.2c and 5.2d) the modelled NAO index

does not follow the observations, although years with relatively marked NAO index are

best predicted. In particular predictions for the years 1988/89 and 1997/98 show a good

consistency with the observed NAO index for all lead times. However, the corresponding
correlation coefficients indicate no statistically significant resemblance for lead times

greater than one month (Table 5.3).

We used the distributions of the modelled and observed NAO indices to quantify the

probabilistic forecast skill. Figure 5.3 shows the RPSSd as a function of integration time

for the operational ECMWF Seasonal Forecast System 2. Statistically significant skills

are found for lead time 0 and lead time 1 month. Longer integration periods

LeadO Lead 1 Lead 2 Lead 3

EOF 33% 29% 31 % 37%

SCF 58% 60% 58% 71 %

RCOR 0.55 0.57 0.54 0.67

Table 5.2: The statistical quantities of the EOF and SVD analysis. Shown are the explained
variances in the EOF analysis (EOF) and the reconstructed (RCOR) and the fraction of

covariance (SCF) in the SVD analysis of the ECMWF Seasonal Forecast System 2 for

different lead times.

System 2 LeadO Leadl Lead 2 Lead 3

NÄO 0.56 (0.03) 0.76 (0.02) 0.24 (0.39) 0.08 (0.78)

NÄO-impact 0.49 (0.05) 0.39(0.16) 0.08 (0.77) 0.05 (0.85)

Table 5.3: The correlation coefficients and the corresponding p-values of the NAO and

NAO-temperature-impact of the operational ECMWF Seasonal Forecast System 2 for

different lead times. Statistically significant results with at least 95 % confidence are

printed in bold.
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(lead time 2 and 3 months) did not show statistically significant skills. A closer

inspection of these skills revealed that single winter seasons have a strong impact on the

skill. For instance, when the winter 1997/98 was excluded from the analysis the skill for

lead time 1 month decreased by about 6 %. This effect has also been considered in the

work of Doblas-Reyes and Stephenson 2003) where the prediction skill of the NAO was

examined for the PROVOST data.

In order to increase the robustness of the analysis the sample size was first increased by

using the perfect model approach (PMA). The results as a function of integration time are

shown in Fig. 5.3 (white bars). It can be seen that for all lead times the skills of PMA are

smaller than those obtained from the forecast approach, but the values are still

statistically significant for lead times 0 and 1 month. Furthermore, the skills in the PMA

are not as sensitive to the climatology as in the case of the FA. However, since the PMA

indicates a robust skill measure, the results suggest an overestimation of the skills for the

forecast approach (grey bars).

We further determined the skill based on a longer period. For this purpose we used the

period 1959-2001 of the DEMETER System. In Fig. 5.4 the RPSSD for lead time 1 month

is shown for the operational ECMWF Seasonal Forecast System 2 (left bars) and the

SCWF model (middle bars) for the period 1987-2001. The skills of the SCWF model for

the shorter period are comparable with system 2. The results of the SCWF model for the

extended period are shown in the right bars. The skills of the FA are reduced to about

3%. The skills of the PMA amount to 5 %-6 % for all periods.

Figure 5.3: The debiased ranked

probability skill score (RPSSD) of the

NAO index modelled by the ECMWF

Seasonal Forecast System 2 as a

function of lead time. Three

equiprobable classes were used. The

reference forecast is based on the

observed data referring to the period
1987-2001. Forecasts for lead time 0

month, 2 months, 3 months are based

on 5-member ensembles, whereas

forecast for lead time 1 month result

from 40-member ensembles. Grey bars

show the skill of the forecast with

respect to the observed NAO index

(FA15). White bars correspond to the

perfect model approach (PMA). The

horizontal lines denote the 95 %

significance levels, which are a

function of sample size.

w

w
CL

ce

1 2 3

lead time [months]



Chapter 5:. Probabilistic Seasonal Prediction of the North Atlantic Oscillation... 7J_

Figure 5.4: The RPSSD of the NAO index for

lead time 1 month for the operational
ECMWF Seasonal Forecast System 2 (SYS2)
and the ECMWF model from DEMETER

system (SCWF) for different periods. Grey
bars denote the RPSSD with the forecast

approach; white bars show results for the

perfect model approach. Three classes were

used. The horizontal lines denote the 95 %

significance levels. (See Table 5.1 for the

ensemble and sample size).

1
87-01 SYS2 87-01 SCWF 59-01 SCWF

In summary, these results suggest, that the prediction with one month lead time of the

winter mean NAO index based on coupled models give an improvement of about 6%

relative to a simple prediction based on climatology. Our results underline the large

sensitivity of any quantitative prediction skill on the sample size and the climatology
chosen and that the most robust estimation of the potential predictability of the NAO

index is achieved by the PMA method.

Multi Model Approach

In this section we use the recently developed DEMETER multi-model data to quantify
the prediction of the NAO. The NAO is the primary mode of variability for all models

with about one third of the total variance. The distribution of the multi-model NAO

indices (not shown) is characterised by a large spread of the predicted ensemble

members, but the ensemble mean index generally follows the observed NAO variability.

From the last sub-section it can be seen that the skill is strongly dependent on the sample
size. We therefore start the discussion of the forecast verification with the period 1959-

2001. For both the multi-model and all individual models (see Table 5.4) no significant
correlation coefficients between the predicted medians and the observations are found.

The RPSSd of the multi-model ensemble and the individual models are shown in

Fig.5.5a. In the FA43 the skill of the multi-model ensemble is about 4 % higher than the

average of the individual models. However, the skills are not significant. Within the PMA

the skills of the individual models are in the range from 5 %-8 %, and the average is

about 6 %.

For the period 1987-2001 the results are different. The correlation coefficient between the

multi-model ensemble median NAO index and the observations amounts to 0.67 (p-value
of 0.01). The correlation coefficients and significances of all individual models are

C/3
tn
a.

a:
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displayed in Table 5.4. Three single models (SCWF, LODY and CRFC) show significant
correlation at the 95 % confidence level. The probabilistic skills for individual models,

the model average and multi-model are shown in Fig. 5.5b. The values range from -3 %

(CNRM) to 21 % (LODY). Only the models of SMPI, SCWF, LODY and SCNR show

significant values. The average of all models amounts to about 10 %. The skill of the

multi-model distribution, however, is higher than the mean of the models and amounts to

about 17 %. The potential predictability for the single-model forecasts are shown in Fig.
5.5b (white bars). It can be seen that the skills are generally decreased but remain

statistically significant for all models except UKMO and SCNR. The average skill for the

models' PMA amounts to a value of 7 %.

DEM CNRM SMPI UKMO SCWF SCNR LODY CRFC

87-01

NAO 0.67

(0.01)

0.10

(0.71)

0.10

(0.74)

0.01

(0.9)

0.56

(0.3)

0.13

(0.6)

0.61

(0.02)

0.64

(0.02)

NAO-

Impact

0.37

(0.19)

0.01

(0.98)

0.05

(0.86)

0.14

(0.69)

0.49

(0.07)

0.06

(0.84)

0.40

(0.15)

0.24

(0.4)

59-01

NAO 0.01

(0.9)

0.19

(0.24)

-0.29

(0.11)

0.05

(0.9)

NAO-

Impact

0.17

(0.25)

0.31

(0.06)

-0.08

(0.61)

0.14

(0.35)

Table 5.4: Same as Table 5.3 but for all DEMETER models and the multi-model ensemble

(DEM) for lead time 1 month. Shown are the results for the period 1987-2001 and 1959-

2001.



Chapter 5:. Probabilistic Seasonal Prediction of the North Atlantic Oscillation. 73
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Figure 5.5: The RPSSD of the NAO index of

the DEMETER models for lead-time one

month for the periods (a) 1959-2001 and (b)
1987-2001. The skills for the multi-model

ensemble (DEM), the model average (AVE)
and the individual models are shown. Grey
bars denote the RPSSD for the forecast

approach while the white bars denote the

perfect model approach. The horizontal

lines denote the 95 % significance levels.

Three equiprobable classes were used.

Skill vs. Amplitude

As suggested by several authors, the skills of seasonal to interannual predictions of

climate patterns are a function of the signal-to-noise ratio (Shukla 2000, Kumar et al.

2001). For instance, in the dynamical seasonal prediction project (DSP) it has been

shown that the skills of the extra-tropical Pacific North America pattern can be associated

with the intensity of El Nino events. Strong events are usually forecasted with high skill.

(b) Figure 5.5: continued.

D FA

PMA

AL

DEM AVE CNRM SMPI CRFC SCWF SCNR LODY UKMO
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Hence it is attractive to consider the skills of single NAO events with respect to their

amplitude. Figure 5.6 shows the RPSSd for the multi-model DEMETER ensemble, the

multi-model and the Seasonal Forecast System 2 as a function of the observed NAO

amplitude for the FA15. There is a large variability in the results for the single winter

seasons and the models. For example, the SMPI model performs best with a maximum

skill for the 1997/98 winter, while the CNRM model shows a minimum in 1989/90. Some

single winter seasons such as the strong 1988/89 NAO show positive skill throughout all

the models. Others such as 1987/88 or 1997/98 have at least a strong positive tendency.

Furthermore, there are a number of winters with low intensity and low skill such as the

winters 1990/91 and 1998/99. In summary, there is a tendency of pronounced skills for

intense winter seasons. But overall, no clear separation between the high and low

intensities can be found. Winter seasons with low intensity neither show intense skills,

nor a uniform direction of the skills. Similarly no clear separation was found for the

period 1959-2001 (not shown).
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95/96 00/01 97/98 87/88 96/97 93/94 98/99 89/90 90/91 94/95 99/00 91/92 92/93 88/89

Winter (DJF) Mean

Figure 5.6: The RPSSD for various winter NAO predictions (upper) as a function of the

observed NAO index (lower). Shown are the operational ECMWF Seasonal Forecast

System 2 (SYS2), the individual DEMETER models (see inlet) and the DEMETER multi-

model (DEM) for the period 1987-2001. In the lower part the amplitude of the NAO and its

standard deviation is shown
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In order to obtain a predictive relation, Fig. 5.7a shows the RPSSd (from Fig 5.6) as a

function of the predicted ensemble mean NAO index. For the period 1987-2001 a

hyperbolic relationship is found between the forecast skill and the forecasted intensity.

Although single outliers exist for single winter seasons and individual models, a strongly

positive and negative forecasted ensemble median NAO is associated with an enhanced

predictive skill, indicating higher credibility. For seasons with low to intermediate

forecasted intensity the results suggest an interpretation with proviso. For example three

single seasons such as the intense winter NAO of 1988/89, the intermediate season of

1990/91 and the El Nino season 1997/98 are shown in colour. It can clearly be seen that

the strong winter season 1988/89 is located in the right tertiles of the figure suggesting a

high predictive value. Moreover, in 1990/91, a year with near-zero observed NAO index,

there were no forecast false alarms, with systems predicting a range of NAO values in the

centre of distribution, but no extreme values. The winter 1997/98 again shows high

predictive skill, this time associated with a distinctly negative amplitude. A similar

analysis of the period 1959-2001, when the skill of the NAO index was not significant,
does not support such a predictive relation (Fig. 5.7b).

A separate examination for the period 1987-2001 (not shown) reveals that the scores of

the forecasts decrease for strong NAO amplitudes at the ends of the diagram. The scores

of the reference forecasts are independent of the predicted NAO amplitude index.

However, they increase for stronger observed winter seasons. This supports the results

that the increase of the skills in Fig 5.7a can be partly explained by the forecasts.

5.4. Probabilistic Prediction of the NAO Related Temperature

Variability

Single Model Approach

In general, practical applications are not dependent on the state of the NAO index

directly, but rather on the associated changes in near surface climate parameters. To

define a NAO-related near surface temperature impact we used an SVD analysis (see
section 5.2). Figure 5.8 shows the leading pair of eigenvectors of the observations and

system 2 for lead time 1 month. As can be seen the right eigenvector (geopotential) of the

observations and the Seasonal Forecast System display the NAO-like pattern. These

modes explain 56 % and 60 % of the SCF of the observation and system 2, respectively.
The SCF and their RSCF for all other lead times up to three months are displayed in

Table 5.2. The left eigenvector (temperature) shows the characteristic features of

responding warm
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Figure 5.7: The RPSSD as a function of the strength of the predicted ensemble mean NAO

index (upper) for lead time 1 month. The results show the ECMWF model and the

DEMETER models for the periods (a) 1987-2001 and (b) 1959-2001. In the lower panel the

amplitudes of the predicted ensemble mean NAO are shown. Dotted lines show the

standard deviations. Single winter seasons (see inlet) are displayed in colours..
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(a) (b)

Figure 5.8: Same as Fig. 5.1 but for the first pair of eigenvectors of the SVD analysis of the

winter mean (DJF) O500 (contours, 10hPa interval) and 2m temperature fields (shadings,
contour interval 0.1°). This mode explains 56 % and 60 %, respectively of the fraction of

squared covariance.

anomalies in northern Europe and south-eastern America and cold anomalies over

northern Africa and north-eastern America. The correlation coefficients of the resulting

pair of expansion coefficients amount to 0.90 for the observations and 0.94 for the

forecasts for lead time 1 month, respectively.

As described in the previous section the regression of the temperature fields onto the

corresponding eigenvectors gives the distribution of the temperature-impact indices.

Figure 5.9 shows the observed and modelled mean NAO-impact index for different lead

times. The modelled mean NAO-impact index shows its highest variability for lead time

0 months. The correlation coefficient between the observed and the forecasted ensemble

median amounts to a statistically significant value of 0.49 (Table 5.3). For lead time 1

month the results are dominated by the spread of each forecast. The variability of the

predicted ensemble median NAO-index roughly follows the observations but is smaller

than for lead time 0 months. The correlation coefficients between the ensemble median

and the observation, however, are not statistically significant.

We used these distributions to quantify the skill with the RPSSd- In Fig. 5.10 the skills

are shown for the FA15 (grey bars) and the PMA (white bars). The RPSSd has a major
decrease with increasing lead time. Statistically significant values of about 25% and 16%

were only achieved for lead time 0 and 1 month, respectively. Longer integration periods
show no significant positive skill. As pointed out in the previous section these results are

strongly affected by the small sample size. A more robust estimation of the skill was

achieved by the two methods introduced in the previous section. For the PMA a similar

reduction was found with skills of 12% and 6% for lead time 0 and 1 month, respectively.

Longer integration time yields no significant results. The robustness with respect to the

extended database is illustrated in Fig 5.11. The left and middle bars show the results of
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Figure 5.9: Same as Fig. 5.2 but for the NAO-temperature-impact index (black lines). The

coefficients refer to the corresponding leading left eigenvector (T2m) of the SVD analysis.
Note that there are 5 ensemble members in (a), (c) and (d), while there are 40 ensemble

members in (b).
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Figure 5.10: Same as Fig 5.3 but for the

modelled NAO-temperature-impact
index.
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Figure 5.11: Same as Fig.5.4 but for the

modelled NAO-temperature-impact
index.
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the operational ECMWF Seasonal Forecast System 2 and the SCWF model for the period
1987-2001 and lead time 1 month. As can be seen the results are comparable. The right
bars show the results for the extended period. The skill for the FA43 has dramatically
decreased to a value of about -3 % which is not statistically significant. The PMA,

however, remains consistently significant with a value of about 5 %-6 %. Hence the

results indicate that the NAO-related temperature impact has a potential benefit greater

than the climatology for lead time 1 month.

Multi Model Approach

Next we investigate the predictability of the NAO-temperature-impact index for the

multi-model distribution. As in the previous section we start with the period 1959-2001.

The correlation of the ensemble median with the observed NAO-temperature-impact
index (Table 5.4) shows no significance, neither for the multi-model ensemble, nor for

individual models. The corresponding skill is shown in Fig. 5.12a. The NAO-impact
index shows no significant positive skill. The skills range from -8 % (UKMO) to 3 %

(SCWF) and 4 % (CNRM). The skill of the multi-model ensemble is somewhat higher

(1%) than the average of the individual models. The skills of the PMA (white bars)

suggest a potential predictability of 5 % to 8 %.

For the period 1987-2001 the correlation coefficients of the ensemble median with the

observed NAO-temperature-impact index are also listed in Table 5.4. The highest values

are achieved with the multi-model, SCWF and LODY. However, the models do not
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Figure 5.12: Same as Fig. 5.5 but for the

modelled NAO-temperature-impact
index.
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provide statistical significance. The probabilistic skills are summarised in Fig. 5.12b. The

skills range from -2 % (CRFC) to 17 % (LODY) for the FA15 (grey bars). The models of

the SCWF, LODY and SCNR show a significant segregation to purely random chosen

values. The average of all models amounts to a non-significant value of about 8 %. The

skill of the multi-model distribution also amounts to about 8 %. However, due to the

larger sample size the skill is statistically significant. The skill for the PMA is also shown

in Fig. 5.12b (white bars). The potential predictability is massively reduced ranging from

3 % (UKMO) to 7 % (SMPI). Statistical significance is found throughout all models apart

from SCNR and LODY. The skills for the average of all models amount to 5 %.

(b) Figure 5.12: continued.
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Skill vs. Amplitude

Finally, the skills of the single NAO-impact seasons were considered with respect to the

observed and forecasted amplitudes. As described in the previous section first the NAO-

impact skills are ordered with respect to the intensity of the observed NAO-related

temperature impact index. Figure 5.13 shows the results for the DEMETER models, the

multi-model and the operational ECMWF Seasonal Forecast System 2. In general there is

no clear separation of pronounced skill with intense NAO-temperature-impact, and the

figure shows a larger variability of skills among the models. An almost perfect forecast is

obtained by the multi-model and SMPI for the winter season 1997/98. The minimum skill

is achieved by the CNRM model in 1994/95. There are several seasons where the models

show a positive tendency of the skills such as the El Nino winters of 1987/88 or 1997/98.

The NAO-impact skills ordered with respect to the predicted ensemble mean impact
index (Fig. 5.14a) show no clear separation either.
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Figure 5.13 Same as Fig. 5.6 but for the NAO-impact onto 2m temperature.
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Figure 5.14: Same as Fig. 5.7 but for the NAO-impact on 2m temperature.

5.5. Conclusion

In this study the probabilistic predictability of the NAO and its impact on near surface

temperature has been investigated. The models used were fully coupled atmosphere-

ocean systems, namely the ECMWF Seasonal Forecast System 2 and a set of 7 models of

the European DEMETER project.

The NAO is known to be the major mode of winter variability in the observations over

the European-Atlantic region. The same was found to be true for the ECMWF system2

and the component models of the DEMETER multi-model. The probability distributions

of the modelled and observed NAO indices have been obtained by regression of the

eigenvectors to the corresponding field variables. We quantified the predictability in

terms of a probabilistic verification measure developed in Müller et al. (2004), namely
the debiased ranked probability skill score with adapted discretization (RPSSd). In

general the NAO skills are small but positive with respect to a climatology forecast and

have a major decrease with integration time and sample size. The best estimate of the

potential predictability was achieved by using the perfect model approach (PMA). The

skill is found to be about 6 % for lead time 1 month and is consistent for different

periods. A similar value is found for the forecast approach of the ECMWF model from
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the DEMETER data set (SCWF) and the extended period of 1959-2001. However, if only
the short period of 1987-2001 is taken into account a probabilistic skill of about 15 % and

18 % is obtained for the operational ECMWF System 2 and the SCWF, respectively. The

multi-model suggests a benefit of about 17 % for the same period and performs better

than the average of the DEMETER models (10 %). Hence the multi-model yields an

enhancement ofNAO skill related to the improved representation of uncertainty.

In summary, the results suggest a small but statistically significant skill for lead time 1

month. These results also show that the high skill for the short period 1987-2001 can be

attributed to the small sample size. Single forecasts have a high impact on the skill for the

short period (Doblas-Reyes and Stephenson 2003). For the extended period 1959-2001

the impact is considerably low.

Additionally, we examined the influence of the amplitudes of the observed and forecasted

NAO indices on the forecast skills. Such an amplitude-dependent forecast skill was found

in the equatorial Pacific region, where ENSO is the primary interannual variability, but

also in the extra-tropics where it has a modulating impact on the PNA region (Straus and

Shukla 2000, Shukla et al. 2000). In general the skills of the modelled NAO indices show

a large variability in time and models. However, if all models are considered for the

period 1987-2001 a tendency towards higher skill is detectable for stronger predicted
ensemble mean NAO amplitudes. Predicted winter NAO with lower intensity show no

preferred sign of the skill. For the period 1959-2001 no tendency is found. Although no

general quantification can be given, the results encourage NAO prediction as long as its

predicted intensity is strong enough.

The predictability of the NAO-related near-surface temperature impact was also

quantified. In a cross-covariance analysis it was shown that the Seasonal Forecast

Systems are capable to forecast the pattern of near-surface temperature linked with the

NAO. It was found that models have skill in predicting climate variability impact at least

one season (one month lead) in advance. However, similar to the NAO index the benefit

is small and the best estimate of the potential predictability is achieved from the PMA.

The PMA provides a skill of the NAO-temperature-impact index of about 5 %. A similar

skill is achieved, if the extended period is applied for the forecast approach 1959-2001. A

general enhancement was found for the short period 1987-2001. Here a beneficial value

of about 16 % was assigned to the operational ECMWF system 2 for lead time 1 month.

The multi-model NAO-temperature-impact index was found to have a statistically

significant value of about 8 %. However, we found no further increase with respect to the

average of all DEMETER models.

Finally, the skills of the single NAO-temperature-impact events were considered with

respect to the observed and forecasted amplitudes. The skills show no clear tendency for

higher skill with stronger predicted NAO-impact amplitude.
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Chapter 6:

Summary and Concluding Remarks

Seasonal climate predictions are operational at several meteorological centres, as the

European Centre for Medium-Range Weather Forecast (ECMWF), and are used for many

applications (Anderson et al. 2003, Palmer et al. 2004, Goddard et al. 2003). In this

thesis, the potential seasonal predictability of the atmosphere and its associated impact on

surface related quantities is explored for the European-Atlantic winter climate. Two state-

of-the-art forecast systems are applied, namely the ECMWF Seasonal Forecast System 2

and the multi-model system developed within the joint European project DEMETER.

Both systems consist of coupled atmosphere-ocean general circulation models and are

designed to produce forecasts with 5 or 40 ensemble members for system 2, and 9

ensemble members per model for the DEMETER system, respectively.

Four major issues are discussed. First, the mechanics of the RPSS are studied in the

context of forecast systems with a small ensemble size. Second, the seasonal forecasts of

the European climate are examined for large-scale averages and on the grid-point scale.

Third, the probabilistic seasonal prediction of the winter NAO and its impact on near

surface temperature is considered. And finally, the seasonal forecasts are evaluated from

an end-user perspective. The key findings are summarised below.

• In agreement with earlier studies (e.g. Kumar et al., 2001), it is shown that the

standard calculation of the RPSS leads to a negative bias that can be even larger
than the expected skill of the forecast system itself. This negative bias is a

consequence of the squared measure used to quantify the forecast error in the

cumulative probability space. It is particularly large for small ensemble sizes.

Two strategies are introduced that circumvent the bias problem of the RPSS. First,

it is shown that the RPSSl=i, which is based on the absolute rather than the

squared difference between forecasted and observed cumulative probability

distribution, is unbiased. However, the RPSSl=i is not strictly proper, which

means that the probabilities can be changed without impact on the skill score. A

second approach, which is based on the quadratic norm, reduces the reference

forecast to sub-samples of the same size as the forecast ensemble size. The

resulting unbiased and proper skill score is denoted as the debiased ranked

probability skill score (RPSSd).
The new skill scores are employed to find the minimum ensemble size required to

predict a given climate signal. By using a hypothetical set up comparable to the

ECMWF hindcast system, statistically significant skill scores can be anticipated
for signal-to-noise ratios larger than -0.3 (40 members) and -0.6 (5 members)

respectively.
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• First the forecast skill of the 2m mean temperatures of the European-Atlantic
domain is examined from a grid-point perspective. For the period 1987-2001 the

ECMWF Seasonal Forecast System 2 shows the highest skill scores over the

subtropical Atlantic Ocean amounting to 20 %-30 %. Over the European

continent, no significant positive skill score is found. The perfect model approach

supports these findings and shows that the potential predictability is confined to

the North Atlantic Ocean. It reveals a horse-shoe like structure over the North-

Atlantic. Additionally, it is demonstrated that the skill scores of the multi-model

approach provide higher skill scores than those of the individual models.

• The winter predictability is next examined via the dominant mode of the

European winter climate variability, namely the NAO. This major winter climate

mode describes about one third of the interannual variability of the upper level

flow in the Atlantic European mid-latitudes. Using a perfect model approach for

the period 1959-2001, it is shown, that the mean winter NAO index is potentially

predictable for lead time 1 month. The prediction benefit is rather small (7 %

relative to the model climatology) but statistically significant. A similar

conclusion holds for near surface temperature variability related to the NAO.

Again the potential benefit is small (8 %) but statistically significant. However,

for verification against observations the results are quite different: For the period

1959-2001, the NAO skill score is not statistically significant, while for the period
1987-2001 the skill score is surprisingly large (16 % to 27 % relative to the

observed climatology). Furthermore, a weak relation between the strength of the

NAO amplitude and the skill score of the NAO is found. This contrasts with

ENSO forecasts which have a strong amplitude dependent forecast skill.

• Finally, the seasonal forecasts are examined from an end-user perspective. A

systematic analysis reveals that the forecast skill can be improved in a relative

sense, looking to spatial and temporal averaged quantities. In the northern Extra-

tropics for instance, 6-monthly mean forecasts provide approximately 5 % and

10% higher skill than seasonal and monthly means, respectively. Spatial

averaging of the near surface temperature shows an increase in forecast skill only
in the tropics, with increased skill scores for an average over approximately 30-

140 grid points. This analysis provides the basis for a newly designed climate

forecast visualisation, the so-called "Klimagram".

Conclusively, the seasonal predictability of the European-Atlantic domain is small and

not comparable to the tropics. The potential benefit for the end user requires careful

considerations about the location and season. The forecast skills discussed in this thesis,

however, depend on the dynamical model used, and an increase in forecast skill is

possible for improved forecast systems. It has been shown that a multi-model provides an

alternative approach to increase the forecast skill (see Palmer et al. 2004, Barnston et al.

2003). But also post-processing techniques, such as downscaling methods can be

considered to improve applications based on the forecast systems (see Palmer et al.

2004).
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Appendix A: End User Application of Seasonal

Forecasts

Many user applications require seasonal climate forecasts for particular cities or regions.

Ideally such forecasts should contain as many details on the predicted quantity as

possible over the entire six month forecast period. The so called "Klimagram",
introduced below, has been developed in this thesis to meet such requirements. Seasonal

forecasts often reveal limited skill on local station or grid-point scale, in particular over

the mid-latitude land areas. A systematic analysis reveals that the forecast skills can be

improved in a relative sense, looking to spatial and temporal averaged quantities.

The Klimagram

The "Klimagram" is a compact way to display a probabilistic seasonal forecast (Fig. Al).
It shows the evolution of monthly mean forecasts with regard to the model climatology
and in a specific geographic area. The abscissa corresponds to the forecast's integration
time and the ordinate shows the anomaly of the forecast relative to the mean of the model

climate. The probabilistic forecast ensemble itself is denoted by blue notched box-plots
divided into quartiles. The black line in the boxes represents the median and the extreme

values are indicated by the end of the dashed lines. The model climatology is displayed in

the background as grey area. The quartiles are shaded grey with the median as black line.

Further, the inner 90 % and the envelope are marked as black solid and black dotted lines,

respectively. The notched box-plots also include a significance test between the

forecasted ensemble distribution and the model climate distribution evaluated for each

forecast month separately. Relevant are the notches of the forecast ensemble and the two

dots of the model climate. The notches display a confidence interval of the median. If

both notches of the box-plot and both dots of the model climate do not overlap, the

median of the two samples differ in a statistical sense at the 95 % confidence level.

In Figure Al two examples of Klimagrams are shown for monthly mean near surface

temperature forecasts. The model climatology is based on the hindcast period 1987-2001

of the corresponding starting month. Panel (a) displays the forecasted temperature values

spatially averaged over Western Europe (grid points over land only). The spread of the

forecast is close to the one of the model climatology indicating a limited skill of this

particular forecast. In panel (b) a Klimagram is shown for a temperature forecast for the

equatorial Pacific Nino3.4 region. In this case the ensemble spread is much smaller than

the one of the model climatology and the forecasted median is significantly above the

model climatology for the entire forecast period, forecasting an El Nino like situation.



A End User Application of Seasonal Forecasts 87

(a) (b)

Figure A-1: Monthly mean near surface temperature forecasts displayed with Klimagrams
for (a) western Europe (4°W-16°E, 48N-52N) and (b) the Nino3.4 region. Forecasts are from

the ECMWF Seasonal Forecast System 2 started on November 1st 2003.
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Figure A-2: The zonal averaged RPSSd as a function of (a) latitude and spatial average

applied (units given in grid points) and (b) latitude and temporal average applied (units

given in months). The skill scores are evaluated on the basis of the ECMWF Seasonal

Forecast System 2 forecasts started at 1st of all months and for the period 1987-2001. For

panel (a) 3-month mean forecasts with lead time 1 month are used.
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Spatial and Temporal Averaging

The sensitivity of the seasonal forecast skill to spatial and temporal averaging is

illustrated in Figure A2. Panel (a) shows the zonal mean of the skill scores (RPSSd) as a

function of latitude and the spatial average applied. The skill scores are calculated at each

grid point by an average of the forecasted 2m temperatures over a surrounding region of

variable size. For example the point (0° latitude, 160 grid points) represents the globally

averaged skill score. As verification analysis the ERA40 data set was used. Using larger

region averages increase the skill in the tropical region, whereas in the mid latitudes

spatial averaging has little effect. The sensitivity of the skill scores to time-averaging is

shown in panel (b). The skill scores increase with longer time-averages. This holds for

the tropics, where the skill scores are increased from about 15 % to 40 %, but also for the

extra-tropics, where the zonal averaged skill scores in the northern and southern

hemisphere amount to 10 % and 20 %, respectively. A more detailed analysis is in

progress as a joint project and is planed to be submitted at full length.
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