BERICHTE aus dem Fachbereich Geowissenschaften der Universität Bremen

No. 129

Pätzold, J., S. Becker, K. Fabian, T. Frederichs, J. Funk, P. Hebbeln,
R. Höppner, B. Jahn, J. Jungclaus, B. Kottke, H. Kuhlmann, B. Laser,
R. Link, T. Lützeler, A. Meyer, C. Moos, S. Niebler, S. Rath, C. Rüth,
F. Schewe, S. Schulz, A. Vink, T. Westerhold, W. Zenk

REPORT AND PRELIMINARY RESULTS OF METEOR-CRUISE M 41/3 VITÓRIA - SALVADOR , 18.4. - 15.5.1998

Berichte, Fachbereich Geowissenschaften, Universität Bremen, No. 129, 160 pages, Bremen 1999

ISSN 0931-0800

The "Berichte aus dem Fachbereich Geowissenschaften" are produced at irregular intervals by the Department of Geosciences, Bremen University.

They serve for the publication of experimental works, Ph.D.-theses and scientific contributions made by members of the department.

Reports can be ordered from:

Gisela Boelen Sonderforschungsbereich 261 Universität Bremen Postfach 330 440 **D 28334 BREMEN** Phone: (49) 421 218-4124 Fax: (49) 421 218-3116 e-mail: eggerich@uni-bremen.de

Citation:

Pätzold, J. and cruise participants

Report and preliminary results of METEOR-Cruise M 41/3, Vitória – Salvador, 18.4. - 15.5.1998. Berichte, Fachbereich Geowissenschaften, Universität Bremen, No. 129, 160 pages, Bremen, 1999.

	Page
1	Participants
2	Research Program
3	Narrative of the Cruise
4	Preliminary Results
4.1	Physical Oceanography
4.2	Tracer-Oceanography
4.3	Water Sampling for Analyses of Stable Isotopes and Nutrients
4.4	Planktology 47
441	Chlorophyll (a) 47
4.4.2	Coccolithophorids 50
4.4.3	Dinoflagellates
4.4.4	Diatoms
4.4.5	Planktic Foraminifera
4.5	Marine Geology, Sediment Cores
4.5.1	Multicorer and Giant Box Corer Sampling
4.5.2	Gravity Corer Sampling
4.5.3	Stratigraphy
4.5.3.1	Methods of Biostratigraphic Analysis
4.5.3.2	Shipboard Results
4.5.4	Lithologic Core Summary
4.5.5	Carbonate Content Measuring.
4.5.6	Particle Size Distribution
4.5.7	Organic Petrology Geochemistry
4.6	Physical Properties Studies
4.6.1	Physical Background and Experimental Techniques
4.6.2	Shipboard Results
4.7	Underway Geophysics
5	Ship's Meteorological Station
6	Acknowledgements and Concluding Remarks
7	References
8	Station List and Standard CTD Data
8.1	Station List
8.2	Standard CTD Data

1	Participants
---	--------------

Name		Discipline	Institution			
Pätzold I	lürgen Dr. (Chief Scientist)	Marine Geology	GeoB			
Rassek D	Dieter Technician	Meteorolay	DWD			
Becker S	vivia Dipl -Oceanogr	Oceanography	IfMK			
Fahian K	arl Dr	Geophysics	GeoB			
Frederich	s Thomas Dr	Geophysics	GeoB			
Funk Ien	s Dinl -Geonhys	Geophysics	GeoB			
Hebbeln	Peter cand geol	Tracer-Oceanography	ПР			
Höppner	René Dinl-Geol	Sedimentology	GeoB			
Iahn Brit	ta Dipl -Geol	Marine Geology	GeoB			
Junoclaus	Johann Dr	Oceanography	IfMK			
Knaack (Christian Dr	Meteorology	DWD			
Kottke B	ernd Cand Geol	Sedimentology	GeoB			
Kuhlmann	Holger Cand Geol	Marine Geology	GeoB			
Laser Ber	rnd Dipl -Geophys	Geophysics	GeoB			
Link, Rud	olf Technician	Oceanography	IfMK			
Lützeler.	Thurid. Cand Geol.	Marine Geology	GeoB			
Mever. At	nia. Technician	Paleobiology	GeoB			
Moos. Ch	ristopher. DiplGeol.	Marine Geology	GeoB			
Niebler, S	tefan. Dr.	Marine Geology	GeoB			
Rath. Stef	anie. DiplGeol.	Sedimentology	GeoB			
Rüth, Chri	istine. DiplPhys.	Tracer-Oceanography	IUP			
Schewe, F	elix. Technician	Marine Geology	GeoB			
Schulz, Si	grid, Cand. Geol.	Paleobiology	GeoB			
Vink, Ann	emiek, DiplGeol.	Paleobiology	GeoB			
Westerhol	d. Thomas. Cand. Geol.	Marine Geology	GeoB			
Zenk, Wal	ter, Dr.	Oceanography	IfMK			
DWD	Deutscher Wetterdienst, Gesch Bordwetterwarte FS Meteor Bernhard Nocht-Straße 76, D	häftsfeld Seeschiffahrt 20359 Hamburg				
fMK	VIK Institut für Meereskunde an der Universität Kiel Abteilung Meeresphysik, Düsternbrooker Weg 20 D 24105 Kiel					
IUP Fachbereich 1 - Physik, Institut für Umweltphysik Abteilung Tracer-Ozeanographie						

Universität Bremen, Kufsteiner Strasse D 28359 Bremen

GeoB Fachbereich 5 - Geowissenschaften Universität Bremen, Klagenfurter Strasse D 28359 Bremen

2 Research Program

Physical Oceanography

The bottom water flow in the South Atlantic across the Rio Grande Rise is part of the global circulation (conveyor belt) together with Intermediate and North Atlantic Deep Water transports. The Vema Channel represents the deepest conduit of the Rio Grande Rise. Accordingly, Antarctic Bottom Water flows on its northward path across the Vema Sill (depth 4660 m). Estimates based on earlier RV METEOR cruises with moored current meters as part of the World Ocean Circulation Experiment (WOCE) have demonstrated that about half of the export from the Argentine into the Brazil Basin is achieved through the deep Vema Channel. According to these long-term observations the equatorward transport amounts to 6.4 ± 3.0 Mio m³s⁻¹.

In addition WOCE observations have shown a tendency towards increased bottom water temperatures. In fact, a systematic temperature increase of 30 mK was observed in the Vema Channel near the sill between January 1991 and December 1992. Comparable changes have never been observed in the Vema Channel since the availability of the first highly accurate CTD records in 1972. The trend towards higher temperatures has also been documented in newer WOCE observations by Brazilian and English parties. Nevertheless, according to the latest RV METEOR observations in the spring of 1996 the upward trend appears to have stopped.

During RV METEOR leg M 41/3 the oceanographic working group aimed at two related subjects: The long-term (> 1 year) recording of temporal variability of bottom water properties with great accuracy and the mapping of their significant spatial differences due to the bottom topography in the southern Brazil Basin.

The deployment of a near-bottom mooring in the Vema Channel was performed during the cruise. It has been equipped with a precision temperature and salinity recorder for the core of Antarctic Bottom Water (AABW). Furthermore, two thermistor chains and two current meters were added to observe the vertical temperature stratification and current shear below 3000 m depth. Supplementary hydrographic observations with CTD and rosette sampler were conducted. They will help to further reveal the structure of the import channels for the bottom water. Water samples were jointly used by the tracer group on board.

Tracer-Oceanography

The tracers CFCs, helium-isotopes, and tritium are of anthropogenic origin and provide together with the classical hydrographic parameters additional information for water mass analysis. They are particularly important for the determination of water mass transports and mixing processes making use of their well-known time-dependent input history at the ocean surface. After the zonal sections on 19°S (1991) and 30°S (1993) which were examined during WOCE (World Ocean Circulation Experiment) additional sampling for tritium, helium and CFCs were planned. Sampling for bottom water in the region of the Vema Channel was of particular interest and thereafter small sections in the region of the Mid-Atlantic Ridge at 24°S (zonal) and meridional at about 9°W up to 19°S. Special focus was placed on the pathways of the North Atlantic Deep Water (NADW) over the Mid-Atlantic Ridge and in the Angola Basin, the deep boundary current which has been observed earlier.

Marine Geology / Sedimentology

The geological program of the cruise aimed to continue and extend previous investigations on pelagic sediments in the region of the Mid-Atlantic Ridge by the long-term research project SFB 261 which aims at the reconstruction of the mass budget and current systems of the South Atlantic during the Late Quaternary. Earlier studies across the Mid-Atlantic Ridge were carried out further north and south during RV METEOR cruises M 16/1 and M 34/4. For the reconstruction of variations in surface, deep and bottom water circulation in the central South Atlantic a geological survey was scheduled along two transects at about 24°S and 19°S across the Mid-Atlantic Ridge. Sediment surface samples had to be recovered with a multicorer and a large box corer, longer sediment cores were planned with a gravity corer mainly from water depths between 2500 and 4200 m. The sampling of these two profiles located within the central gyre of the South Atlantic were performed to enlarge the data set for mapping paleoceanographic changes in the circulation patterns within the South Atlantic and contribute to the reconstruction of the biological productivity in this oligotrophic area.

The focus of sedimentological research interest during RV METEOR cruise M 41/3 concentrated on sampling the near surface sediments from the southeastern Brazil Basin and along two zonal sediment core transects over the Mid-Atlantic Ridge. Investigations of grain size spectra performed on surface sediments and Late Quaternary deposits from the northern Vema Channel and the adjacent southern Brazil Basin reveal important information for the

reconstruction of the flow of Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). Grain size studies of surface sediments correlate to current conditions, transport mechanics and accumulation patterns hence documenting the recent hydrography in the ocean.

Paleobiology

Oceanic surface sediments were sampled using the multicorer and large box corer in as many different locations as possible, to obtain information on the recent and sub-recent distribution of organic walled and calcareous dinoflagellate cysts. These distributions are of great importance as they substantially improve interpretation possibilities of changing dinoflagellate cyst assemblages through glacial and interglacial periods and can provide more insight into the changing current systems of the South Atlantic during the Late Quaternary. In addition, plankton was extracted from the upper water column by filtration. For these purposes, water samples were collected with the rosette at various depths within the photic zone and by the daily sampling of surface waters using the ship's membrane pump. The aim of this was to isolate living dinoflagellates for culture studies, with emphasis on those dinoflagellates producing calcareous cysts which are not yet in culture at the University of Bremen. The remaining plankton material was conserved for later, more detailed investigations.

Geophysics

The sediment cores from the central South Atlantic were expected to provide useful magnetic data sets about glacial and interglacial fluctuations to document the particular variations in eolian influx. The chronostratigraphic core network SUSAS based on orbitally tuned high-resolution records of magnetic susceptibility presently covers latitudes from 40° to 30°S. It will be extended into the adjacent northern region permitting continuous time slice analysis of depositional processes within the entire subtropical South Atlantic.

During the entire cruise the shipboard echosounder systems HYDROSWEEP and PARASOUND were continuously operated to record the bathymetry of the ocean floor and shallow sediment structures. In accordance with past experience, the geological sampling sites were selected very efficiently based on these surveys. In particular, the coring profiles across the Mid-Atlantic Ridge at about 24°S and 19°S are situated in a region of exceptionally rough morphology and therefore required thorough acoustic pre-site profiling. Special interest was

placed on recording the sediment structures in the central Vema Channel and in its northern vicinity in the southern Brazil Basin. Multiple frequency tests at all coring stations are a prerequisite for a detailed correlation of PARASOUND records with on board physical property logs.

3 Narrative of the Cruise

After three days in port, RV METEOR left Vitória (Brazil) on Saturday, April 18, 1998 at 08:15 p.m. local time beginning the third leg of M 44. The scientific shipboard party included 17 colleagues from the Geoscience Department of Bremen University, two from the Institute of Environmental Physics of Bremen University, four from the Institut für Meereskunde Universität Kiel, and two meteorologists from the Deutscher Wetterdienst in Hamburg. The scientific program of the cruise included oceanographical, tracer-oceanographical, marine geological, and geophysical studies in the central area of the South Atlantic.

The vessel sailed southward towards the first working area in the Vema Channel. On Monday morning, April 20, the scientific program began with profiling measurements of HYDROSWEEP and PARASOUND, water pumping for plankton and thermosalinograph recordings at 27°33′S/40°40′W. On the same day we performed a test station with a CTD/rosette and another rosette system at a deep station of about 4390 m in a gap in the eastern Santos Plateau.

On April 21, we successfully deployed a near bottom mooring in the central Vema Channel. It was equipped with a precision temperature and salinity recorder for the core of the Antarctic Bottom Water (AABW). Furthermore, two thermistor chains and two current meters were added to observe the vertical temperature stratification and current shear below 3800 m depth. Four CTD/rosette stations and another shallow rosette cast for plankton across the Vema Channel supplemented the hydrographic surveys in this southernmost working area of the cruise. We then steamed northwestward to the northern extension of the Vema Channel into the southern Brazil Basin. Here, a second hydrographic profile with different CTD/rosette stations and the first sediment stations with multicorer, box corer and gravity corer were performed. A 9.6 m long sediment core at the end of the profile was retrieved to study the sedimentological history of bottom flow conditions in the southern Brazil Basin during the Late Quaternary.

6

We left this area in the early morning of April 25 and sailed 3.5 days eastward towards a profile crossing the Mid-Atlantic Ridge (MAR) from the Brazil Basin to the Angola Basin at about 24°S between 20°W and 9°W. From April 28 to May 3 we carried out nine hydrographic casts with CTD/rosette and searched for suitable sediment stations on the flanks of the Mid-Atlantic Ridge. Sediment sampling on the flanks of the Mid Atlantic Ridge required detailed geophysical surveys by HYDROSWEEP and PARASOUND. However, local sediment basins on the slopes of the basaltic MAR revealed suitable coring sites. We successfully covered six sediment stations with multicorer, box corer and gravity corer at 19°S with four stations located in the Brazil Basin and two in the Angola Basin.

On May 3 and 4 we continued research with a hydrographic section on a S-N directed profile at 9°W with three CTD/rosette casts. At most hydrographic stations of the cruise, water samples were collected for the tracers tritium, helium and CFC's in addition to the classical hydrographic measurements for water mass analysis. A total of 240 helium- 144 tritium- and 400 CFC-samples were drawn from standard Niskin bottles. At 21 stations, water samples from the whole water column were also taken for analysis of stable carbon and oxygen isotopes and nutrients. The main interests of this research were to sample the flow of Antarctic Bottom Water through the Vema Channel into the Brazil Basin and the pathways of North Atlantic Deep Water (NADW) across the Mid Atlantic Ridge (MAR) into the Angola Basin. The L-shaped section across the MAR at 24°S and along its eastern flank at 9°W intersects the WOCE A9 cruise at both ends and thus closes a box within which NADW presumably crosses the MAR.

On May 4, we started a second profile across the Mid-Atlantic Ridge at about 19°S beginning in the Angola Basin and leading back to the Brazil Basin. This last profile of the cruise concentrated on geoscientific studies. Along this northern transect across the Mid-Atlantic Ridge we covered six sedimentological stations in the Angola Basin and six in the Brazil Basin. The last sediment station was carried out in the night from May 9 to 10, at 19°05′S/17°09′W. During the whole cruise in total 21 sediment sampling stations were covered including 21 multicorer, two box corer and 22 gravity corer deployments. Recoveries of sediment cores ranged between 0.3 and 9.6 m. Initial results indicate that the up to 5.6 m long sediment cores from the Mid-Atlantic Ridge in water depths between 2550 and 3950 m were collected with very little disturbance of the recovered material. Core descriptions and initial stratigraphic analyses reveal continuous sediment records in many areas of the Mid-Atlantic Ridge with sedimentation rates ranging between 0.5 and 1.0 cm/1000 years. Surface water pumping during the cruise was carried out for chlorophyll samples and the collection of dinoflagellates, coccolithophorids and foraminifera. In addition, at seven stations, coccolithophorid and dinoflagellate samples were taken from Niskin bottles from up to six depth horizons down to 200 m. The samples are important to study the distribution of the different groups of planktic organisms and will be used for calibration of the paleorecords from sediment cores. Geophysical surveys with the shipboard echosounder PARASOUND and the multibeam echosounder HYDROSWEEP were continuously carried out during the cruise to record and study high resolution bathymetric and sediment echosounding profiles.

The completion of water sampling and all profiling measurements concluded the scientific work of the cruise on May 14, 06:00 p.m. at 14°16′S/34°30′W before entering the 200 n.m. economic zone of Brazil. RV METEOR sailed west towards Salvador, where the third leg of cruise M 44 ended safely on the morning of May 15, 1998.

Fig. 1 RV METEOR Cruise M 41/3. Track annotation interval is 6 hours, dates are set at 0 hours. Sampling locations (GeoB) are indicated

9

4 **Preliminary Results**

4.1 **Physical Oceanography**

(W. Zenk, S. Becker, J. Jungclaus, R. Link)

Introduction

The World Ocean Circulation Experiment (WOCE) will terminate its observational phase by the end of 1998. This unique oceanographic campaign compassed planning, implementation and coordination of a global network of hydrographic observations and now aims at extensive modeling studies during its analysis, interpretation and synthesis phase in the years to come. The hydrographic work during M 41/3 was part of the Deep Basin Experiment (Hogg et al. 1996), a subprogram in Core Project 3 of WOCE. Furthermore, the physical oceanography group on board assisted in collecting water samples for other parties on the METEOR, including supplements to the WOCE Hydrographic Program (WHP) tracer network.

The equatorward flow of Antarctic Bottom Water (AABW) in the South Atlantic is part of the global thermohaline circulation, together with fluxes of Antarctic Intermediate Water (AAIW) and North Atlantic Deep Water (NADW). The Rio Grande Rise at a nominal latitude of 30°S represents a natural barrier for the spreading of Antarctic Bottom Water between the Argentine and the Brazil Basin. It is intersected by two deep channels: The Vema Channel (originally called Rio Grande Gap) and the Hunter Channel (Zenk et al. 1993; Zenk et al. 1998). Estimates based on geostrophy and results from moored current meters have demonstrated that more than half of the bottom water export between the two neighbouring basins is achieved through the deep Vema Channel (Speer and Zenk 1993; Hogg et al. 1998). According to these long-term observations the total northward transport of Antarctic Bottom Water amounts to $6.9 \times 10^6 \text{ m}^3\text{s}^{-1}$. The contribution of the Hunter Channel (2.3 × 10⁶ m³s⁻¹) is not insignificant (Zenk et al. 1998) but was beyond the scope of this cruise.

At a number of locations, WOCE observations demonstrated a tendency towards increasing bottom water temperatures. In fact, a systematic temperature increase of 30 mK was observed by the METEOR in the Vema Channel near the sill between January 1991 and December 1992. Comparable changes of bottom water properties had never before been observed in the Vema Channel since the availability of the first highly accurate CTD records in 1972. The trend towards higher bottom water temperatures has also been documented in comparable, yet

unpublished WOCE observations by Brazilian and English groups. According to the latest visit in the spring of 1996 the upward trend appeared to have stopped, however we had to revise this view at the end of our cruise.

During M 41/3 the physical oceanography group aimed at a new survey of the bottom water properties and distribution by (i) starting a long-term record of the variability of water mass characteristics at the sill of the Vema Channel with moored instruments and (ii) enlarging the set of highly accurate hydrographic data during cruises. The latter is also expected to serve as an improved input for modeling efforts. Monitoring of bottom water properties will provide more insight into its fluctuations which for a long time have been assumed to be negligible.

Methods, data acquisition and reduction

A number of observational tools were applied during the cruise. The backbone for hydrographic observations was a CTD (<u>c</u>onductivity, <u>t</u>emperature, <u>d</u>epth (pressure)) recorder in combination with a rosette sampler carrying 21 bottles. An inventory of all CTD stations is given in Table 1. Locations of CTD stations are displayed in Figs. 1 and 2. The bottle set was used on 25 stations yielding over 500 water samples. Because of the application of a lowered Acoustic Doppler Profiler (IADCP), to be described later, no mechanical bottom finder was used. Instead, bottom approaches were monitored by a pinger.

Our CTD system (Neil Brown MKIIIB, IfM no. NB3) was provided by the IfM based Zentrallabor für Meßtechnik, a German WOCE unit maintaining high quality instruments as well as their reliable calibration. The CTD probe was last calibrated in temperature immediately prior to cruise M 41/3 on 11/12 March 1998. A post-cruise calibration was performed in summer 1998.

We made every effort to calibrate all CTD stations while still on board. 42 salinity twin samples, a subtotal of all the rosette samples, were analyzed by an Autosal salinometer (IfM no AS6). For standardizing we used batch No P129. The resulting 21 pairs of check values were systematically taken from the deepest part of the profiles, i.e. about 25 m above the ground (near-bottom, NB), and from the mixed layer (ML) at the 10 m level. The inter-twin standard deviations of salinity amount to \pm {0.0009, 0.0019, 0.0015} for {NB, ML, all} levels. Comparable sampling noise during the CTD data acquisition at constant depth while firing bottles is of a similar order \pm {0.0007, 0.0027, 0.0017}. Quasi-time series of salinity corrections are shown in Fig. 4. Mean salinity corrections for {NB, ML, all} levels ({+1.8,

+9.3, +5.5} \times 10⁻³) are included. No systematic calibration drift could be recognized. Fig. 5 contains corrections as a function of salinity readings. Here, we found a dependence on salinity (conductivity) which needs to be considered in the final calibration. Assuming all ML values taken at the surface, all NB values sampled at 4000 dbar and salinity decreasing linearly with pressure P_{CTD} we can infer a crude preliminary correction for raw salinities S_{CTD}:

$$S_{\text{corrected}} = S_{\text{CTD}} + (B \times P_{\text{CTD}} + A)$$
(1)

with $B = -1.85 \times 10^{-6}$ dbar⁻¹ and $A = 9.2 \times 10^{-3}$. In the following text and figures no salinity correction is applied. Since corrections are relatively tiny, they would not be recognizable in the majority of the salinity graphs shown in this document. Final salinity values are subject to a more careful post-cruise CTD calibration.

Lists of all CTD casts with observed *in situ* temperatures, potential temperatures and salinities at standard depth/pressure values are given in Chapter 8.2. Here, preliminary salinity corrections according to (1) have been taken into account.

The latest version of the processing and data reduction software package CTDOK, administered by Thomas Müller of IfM, was used on a Personal Computer. The processing includes the following sequential software modules: Inspection and graphic editing by hand, maximum lowering speed check to detect pressure spikes, dynamic pressure correction, despiking by a median argument, monotonizing with respect to pressure, minimum lowering speed check, low pass filter run with 19 weights, pre-cruise fine-tune calibration, static pressure-offset correction, interpolation on 2 dbar steps and storage for plotting and export in MATLAB[®] binary files (*.mat).

During earlier WOCE cruises the same CTD probe was used repeatedly in the Vema Channel and for WHP section work. According to our earlier experiences and after the application of all corrections and the post-cruise calibration, an absolute accuracy of better than ± 2 mK in temperature, ± 0.003 practical salinity units (PSU), and ± 3 dbar in pressure can be expected.

The refurbished on-track observational system DVS of the METEOR was used to collect quasi-continuous near-surface temperature from two sensors of the ship's meteorological station. It was found that the portside thermometer reading lies systematically $\{0.149 \pm 0.050\}$ K below the starboard thermometer of the ship (Fig. 6). Both sensors are mounted 4 m below the surface. An *ad-hoc* comparison with CTD data from the surface (according to Table 1) indicates the portside DVS temperature to be systematically lower by ~ 0.3 K (see Fig. 12b).

Between 21 April and 5 May we collected 34 twin water samples for a calibration check of the ship's thermosalinograph, the data of which are also fed to the *DVS* system. From the resulting 17 salinity check values we inferred a calibration equation that is valid for April / May 1998:

$$S_{corrected} = D \times S_{ThermosalinographDisplay} + C$$
⁽²⁾

with D = 1.0054 and C = -0.0211. Four samples of these were collected on passage. Although the latter are supposed to be of slightly lower quality, all samples were treated equally by the indicated least square linear fit (Fig. 7).

Preliminary depth profiles for sections were exported from the *DVS* data bank as well. Due to varying numbers of outliers, depth values were clipped by plausible extrema and subsequently low pass filtered.

Until Sta. 229, the CTD/rosette sampler was supplemented by a *lowered* broad-band Acoustic Doppler Current Profiler (BB IADCP) which was kindly provided by Jürgen Fischer from IfM Kiel. We expect the obtained vertical current profiles to deliver valuable information on shear as an indicator for enhanced mixing in the benthic boundary layer of the Vema Channel and its northward extension. Due to a technical problem, the last IADCP station (no 229) failed to deliver currents. After successful repair, the instrument was not remounted on the rosette sampler. The IADCP log is given in Table 4.

In addition to the well known problem of the near bottom interference layer, our IADCP measurements suffered from a lack of scattering particles in the intermediate depth ranges of this 'blue water' environment. The dramatic decrease of the received signal amplitude can be seen in the vertical profile of target strength (Fig. 8a, profile 212) below 1000 m. However, the signal strength recovers over the deepest 600 m of the profile, apparently owing to an increase of sediment particle concentration on the Vema Sill.

Fig. 8b depicts the raw vertical velocity component (bin 3) over the total duration of the cast. The lowering speeds of 1 ms⁻¹ during downtrace and 1.2 ms⁻¹ during uptrace are generally recovered. However, there is a large data gap between, say, ensemble 700 and 1100 (the bottom-nearest point was approached around ensemble 1300). During uptrace a similar behaviour is observed and there are additional periods of near-zero vertical velocities during water sampling stops. These data gaps are also visible in the raw data northward velocity component (Fig. 8c). Near the bottom (around ensemble 1300) the (earth) velocities are predominantly northwards as expected in the deep trough of the Vema Channel.

The standard procedure to derive relative velocities is to differentiate individual lADCP profiles vertically, then to average overlapping profiles in depth cells and integrate the resulting mean shear profile from a reference level (Fischer and Visbeck 1993).

The IADCP is a self-contained instrument without pressure sensor. Its depth is determined by integrating the measured vertical velocity in time. The large data gaps prevented us from calculating reference velocities from time integrals of the baroclinic velocities by our software package so that the data require additional post-cruise processing. (The set of processing programs had been kindly provided by J. Fischer.)

Relative northward velocities (referenced to the deepest point at 4362 m) are displayed for the deep part of the profile in Fig. 8d (downtrace), and 8e (uptrace). Northward velocities show maximum values between 100 to 200 m above the bottom. They are consistent with earlier findings from moored current meters in the Vema Channel and from numerical modeling. This nose-shaped velocity profile with pronounced shear layers above and below the maximum is typical for bottom boundary currents (Mercier and Speer 1997; Zenk et al. 1998).

The *vessel mounted* Acoustic Doppler Current Profiler (VM ADCP) operated routinely. It covered approximately the upper 250 m layer. Unfortunately its data flow is still not yet integrated by the ship's own *DVS* data bank.

For topographic surveys we used the multi-beam echosounder HYDROSWEEP[®] of the METEOR. In the subsequent data processing we were kindly supported by the ship's system operator V. Gebhardt. Of special interest were details of the topography of the Vema Sill where IfM mooring V389 was deployed (see Table 2, Fig. 9). This area had already been surveyed with HYDROSWEEP in 1991 during METEOR cruise 15. Fig. 10 shows blow-ups on identical scales of both independent observations from the eastern side of the Vema Sill. They were obtained with the same hardware but with significantly different HYDROMAP[®] software versions. As expected, both maps agree excellently in regions with steep topography. In fact, the slope of the eastern wall (as depicted) can exceed 25 %. Less agreement in the details can be found on the ground plateau with its minimal slopes. Inaccuracies in depth estimates can shift isobaths horizontally by a few kilometers.

At the beginning of the cruise, on Sta. 209 we deployed a current meter mooring (IfM no V389) on the sill of the Vema Channel. Logistical and operational details are given in Fig. 9 and Table 2. The current meter rig is designed for a two-year record of temperature and speed fluctuations. The moored CTD recorder (MicroCat[®] by Sea Bird, Inc.) has a sampling capacity

of over three years. A major goal of the physical oceanography group on board was to start a long-term record of temperature variability of Antarctic Bottom Water with great accuracy.

Hydrographic conditions in the central South Atlantic

Here we discuss the water mass stratification on two orthogonal sections at 9°W and 24°S. We assume that the hydrographic stations selected are representative for the central subtropical South Atlantic. The sections (see Fig. 2) are short in comparison with the WHP network (Siedler et al. 1996). Related WOCE sections A9 and A14 are located on 19°S and 9°W. They were occupied in 1991 and 1995 by METEOR (M 15) (Siedler and Zenk 1992) and the French research vessel L'ATALANTE.

For the general descriptions of distinctive water masses we depict their characteristic potential temperature salinity (θ /S) properties in Fig. 11. For this purpose we have plotted all interpolated ($\Delta p = 2$ dbar) CTD data from the two sections in one diagram.

Tropical surface water (TW) with $\theta > 20^{\circ}$ C at the top of Fig. 11 shows a tendency to split. Colder, more fresher water was encountered on and to the East of the Middle Atlantic Ridge in the Angola Basin. Its counterpart with warmer and saltier surface conditions in the Brazil Basin can be better recognized in Fig. 12. This figure shows the near-surface T/S record from the thermosalinograph ($\Delta t = 10$ min) on four sections. The higher variability in T/S in the western (Fig. 12b) and the southern (Fig. 12a) regions reflects a number of fronts, more frequently encountered in the open Brazil Basin than in the Angola Basin (Fig. 12b). The frontal structure of surface parameters appears to be caused by the Brazil Current Front (BCF) as part of the inner recirculation in the Brazil Basin.

The colder surface waters (< 25°C) on 9°W and on its cross point with the 24°S section can be interpreted as a signal of the far reaching Benguela Current southwest of the Benguela Angola Front (Fig. 13). Densities, i.e. σ_t values, at the surface of the central South Atlantic of {(24.3 - 24.5), (24.7 - 24.9)} kgm⁻³ are typical ranges for the {Brazil, Angola} Current regime in May 1998. Here we note that two subtropical surface water types are separated by a line west of the Middle Atlantic Ridge. The crest region itself has the same T/S properties as the eastern side of the Ridge.

We return to the CTD derived θ /S diagram in Fig. 11. At temperatures between approximately 10° and 16°C we find a tight θ /S relation which in our case is characteristic for South Atlantic Central Water (SACW) of the main thermocline. Farther down in the water column it is replaced by Antarctic Intermediate Water (AAIW) with its salinity low at < 34.5 (Boebel et al. 1997). The next salinity extremum (> 34.86) belongs to the North Atlantic Deep Water (NADW) (Zangenberg and Siedler, 1998). After crossing the equator it erodes Circumpolar Deep Water (CDW), splitting this lower saline water mass into an upper CDW and a lower CDW type (Reid et al. 1977). Towards the West of our 24°S section, the deepest part of the water column (θ < 2.0°C) is occupied by the Antarctic Bottom Water (AABW) (Speer and Zenk 1993). Its properties will be discussed in more detail in the next paragraph on observations in the Vema Channel.

Our presentation of the water mass structure in the θ /S diagram (Fig. 11) is paralleled by figures of vertical sections of potential temperature (θ) and salinity (S) from the adjunct sections on 9°W and 24°S (Figs. 14, 15). The low saline tongue of Intermediate Water at 750 m remains unchanged at S_{min}~34.40 on the zonal section (Fig. 15) while we recognize a well expressed meridional gradient with equatorward increasing salinities on the meridional section (Fig. 14).

The thick tongue of North Atlantic Deep Water (S > 34.90) appears to be blocked by the topography of the Middle Atlantic Ridge (Fig. 15). However, at the northern side of the 9°W section we cut through a salty tongue of Deep Water (S > 34.90) which we interpret as being deflected eastwards across the Ridge into the Angola Basin by the change of its potential vorticity in the presence of the zonal Vitoria Trindade Ridge at 19°S (Zangenberg and Siedler 1998) and being one source of the Namib Col current (Speer et al. 1995).

Farther south we have traversed the deep Rio de Janeiro Fracture Zone at 23.7°S. It allows lower Circumpolar Deep Water with $\theta \ge 2.0$ °C to be exchanged across the Ridge. Its role in the deep circulation of the Angola Basin remains unclear and deserves further efforts. As expected, a distinct near-bottom temperature step in vertical profiles as seen so clearly in the Brazil Basin was found nowhere in the Angola Basin. This observation agrees with the known absence of Antarctic Bottom Water in the Angola Basin (Siedler et al. 1996).

Flow of Antarctic Bottom Water through the Vema Channel

The Vema Channel represents the deepest conduit for bottom water of the Rio Grande Rise (Hogg et al. 1982). According to our newest bathymetric survey (Fig. 10b) its depth varies between 4620 and 4640 m. Its northern extension can easily be followed by tracking the 4000 m isobath on the digital topographic map by Smith and Sandwell (1997) displayed in Fig. 16.

We have included positions of the two hydrographic sections: 'Vema Channel' (VC) across the Vema Sill and the section 'Vema Extension' (VE) at the northeastern corner. Both sections are shown on different horizontal scales (section VC in Fig. 17, section VE in Fig. 18). Mooring V389, deployed 21 May 1998 (Fig. 9, Table 2), lies 4 km upstream between CTD Sta. 210 and 211 (Fig. 17). Its projection can be seen in the temperature sections of Fig. 17. Results from the self-recording instruments are not expected before the year 2000.

Water masses found in the Vema Channel (Speer and Zenk 1993) resemble those described in the last paragraph for the central South Atlantic. They are stacked in the well known fashion from the top to the bottom: Tropical surface Water and South Atlantic Central Water of the main thermocline, low saline Antarctic Intermediate Water at 900 m, upper and lower Circumpolar Deep Water penetrated by more saline North Atlantic Deep Water (1500 - 3500 m) and closest to the ground Antarctic Bottom Water with $\theta < 2^{\circ}$ C including its coldest compound Weddell Sea Deep Water ($\theta < 0.2^{\circ}$ C, see Figs. 17, 18 for pressures larger than 2500 dbar).

Water properties of the Vema Channel and in the Vema Extension below approximately 4100 m can be studied in more detail in the blown-up θ /S diagram of the deepest stations (Stat. no. 212 and 215) in Fig. 19. The form of the vertical profile (Fig. 20) demonstrates the well mixed bottom boundary layer in the channel. Its thickness is of O(140 - 180) m.

Thick bottom boundary layers are a unique feature of narrow oceanic passages with bottom water flow (Hogg et al. 1982; Jungclaus and Vanicek 1998). Frictionally driven secondary circulation drive relatively warm waters down the (here western) channel wall leading to hydrostatic unstable conditions and intense vertical mixing. On the eastern side of the Vema Sill relatively cold water is transported upslope enhancing the stratification there. Thus, the coldest waters are trapped and shielded on the eastern side of the channel (Fig. 17) by both a pronounced thermocline and the channel wall (Fig. 10).

Summary and concluding remarks

We summarize our preliminary results as follows:

- Earlier observations (Fig. 21; Zenk and Hogg 1996; Hogg and Zenk 1997) showing increasing bottom temperatures and salinities in the Vema Channel were confirmed. Compared with 1996, the lowest potential temperature in the Vema Sill rose again by 20 mK (Table 3). A pertinent salinity increase of 0.007 was directly observed from salinity samples taken by the rosette sampler closest to the bottom from two METEOR expeditions (M 36 in 1996 and M 41). No change in the density stratification appears to be associated with this change in θ /S properties. However, final salinity calibration of the CTD records remains subject to the post-cruise calibration.
- Between the Vema Sill and the Vema Extension (~ 27°S, 34°W, see Fig. 16) Weddell Sea Bottom Water with θ ≤ 0.2°C is guided and isolated from mixing with warmer Lower Circumpolar Deep Water for over 700 km by the cañon-dominated topography. Its temperature rises from θ = -0.136 to -0.098, i.e. by only 38 mK, salinity increases by barely 0.005 practical salinity units (34.670 ⇒ 34.675). The question of how far these temperature and salinity increases are caused by turbulent diffusion and/or by advected modulations of the source waters must remain open, since they can both be of the same order.
- Further mixing takes place northeast of the funnel-shaped end of the Vema Extension in the deep Brazil Basin with depths > 4800 m (upper right hand corner in Fig. 16). Some additional 1300 km downstream at Sta. 218 (see Fig. 2), the tongue of Weddell Sea Deep Water, the coldest subtype of Antarctic Bottom Water, has been totally eroded. There we found bottom values of θ = 0.440°C and S = 34.716. Hence, the horizontal bottom temperature and salinity gradients between the exit of the Vema Extension and the inner Brazil Basin increase significantly due to turbulent mixing in the absence of a shielding cañon. They are one order of magnitude larger, {550 mK, 0.04}/1300 km in {θ, S} than in the Vema Channel itself.
- A long-term mooring carrying current meters (Fig. 9; Table 2), thermistor chains and a CTD recorder for the observation of property fluctuations was deployed without any problems.

Table 1 Inventory of CTD stations

Station No/ Profile No	GeoB No	Date 1998	Time UTC	Lat °S	Long °W	z(m) Bridge Log	near surface T(°C)	at dep T(°C) p	th (m) _{max} (dbar)	IADCP y/n	Remarks
208 / 01	£101 1	20/04	16.44	28 26 25	10 54 50	1200	22.04	0.26	4401		Test station
208/01	5101-1	20/04	10:44	28 26.25	40 54.59	4388	23.94	0.36	4421	<u>у</u>	Test station
210/02	5105-1	21/04	17:42	31 11.84	39 23.80	4014	21.04	0.22	4000	у	venia Channel
211/03	5104-1	21/04	21.39	31 12.04	39 21.02	4374	21.15	0.22	4030	y 	
212/04	5105-1	22/04	01:42	31 12.02	39 18.90	4473	21.10	0.20	4510	y v	
213/03	5100-1	22/04	10.16	31 12.03	39 10.02	2708	21.44	1.20	3812	y Y	Verna Extension
214/00	5107-1	23/04	19.10	20 33.99	24 14.00	3738	23.39	0.28	1862	y N	venia Extension
215/07	5108-1	23/04	23.33	20 41.97	34 14.02	4783	23.05	0.28	4002	y	
210/08	5110.1	24/04	16.45	20 17.33	34 30.10	4341	24.33	0.30	4388	y V	
217/09	5110-1	24/04	10.45	23 33.88	20 00 03	5215	25.05	0.41	5284	y V	24°S
210/10	5112.1	20/04	10.14	23 40.01	16 16 34	3874	25.10	1.50	3901	y V	24 0
219/11	5112-1	29/04	10.07	23 49.39	15 00.02	2852	25.19	2.14	3885	y N	
220/12	5115-1	30/04	11.46	23 40.12	13 00.02	2171	23.01	2.14	3204	y v	
221/15	5119 1	50/04 01/05	11.40	24 09.93	13 39.00	2741	24.75	2.01	2778	y v	
225/14	5110-1	01/05	15.57	24 10.01	13 23.07	2741	24.01	2.71	4008	y v	
220/13	5102.1	01/05	13.57	24 10.08	12 10.11	2727	24.40	2.47	3760	у 37	
229/10	5122-1	02/05	10.30	24 10.23	00 53 02	4377	24.51	2.41	4375	y n	
231/1/	5124-1	02/05	25.55	24 09.90	09 55.92	4322	23.51	2.45	4573	n	9°W
232/10	5125-1	02/05	10.00	24 09.91	09 00.19	4402	23.08	2.44	4223	n	
233/19	5120-1	03/03	02:51	22 23.90	08 59.90	3941	24.04	2.40	3878	n	
234/20	5127-1	04/05	12:02	21 12.10	09 00.13	3050	27.97	2.56	3951	n	
255721	5120-1	04/05	15.05	20 00.03	09 00.09	3838	25.55	2.40	3857	n	19°S
236722	5129-1	04/05	21.40	10 59.90	09 40.23	3840	24.40	13 14	250	n	x
230/23	5129-2	05/05	00:57	10 27.78	12 40.20	1536	24.45	3 48	1500	n	
243/24 248/25	5130-3 5141-1	07/05	18:30	19 22.00	12 42.07	3453	25.62	3.65	1502	n	
270723	J171 1	07/05	10.50		1. 10.12						

Fig. 2 Location of all CTD stations (*). Hydrographic work was equally split between Vema Channel, Vema Extension, and sections on 24°S and 9°W. For details see Table 1

Fig. 3 CTD station (*) distribution in the area of the Vema Sill. Location (0) denotes the position of IfM mooring V-289. For details see Table 1 and 2

Fig. 4 Comparison of displayed CTD data and their bottle check values as a function of station number or time. The upper curve (*) contains all cases from the mixed layer at 10 m depth. The lower curve (o) denote check values from the deepest level, i.e. ~ 20 m above the sea bed. No drift or calibration shifts are visible

Fig. 5 Comparison of displayed CTD data and their bottle check values as a function of salinity. For symbols see Fig. 4

Fig. 6 Comparison of the two sea surface thermometers of the meteorological station METEOR. Data were recorded by the DVS system. Sensors show a bias of $O(0.15^{\circ}C)$

Fig. 7 Comparison of surface salinities displayed by the DVS system with salinity check values from water samples taken immediately behind the thermosalinograph chamber in the bow of METEOR

Fig. 8 Sample plots of the lowered Acoustic Doppler Current Profiler (IADCP) from CTD Sta. 212 in the Vema Channel. Note the bottom intensified current profiles (d and e) which indicate the northward transport of Antarctic Bottom Water (AABW) across the Vema Sill. For further details see text

Sta No	. IfM VNo	CTD Sta/Pro	Date f 1998	Latitude S	Longitude W	Depth (m)	n Ref No	Instr. Type	Instr. S/N	Remarks
209	389	{210/2- 212/4}	21APR	31°14.30'	39°20.00'	4580	-	WD	2266	ARGOS, no recept. d. deploym.
							389101	ThCh	1295/ 1960	nom recorder depth 4090 m i.e. 490 m above ground 11 sensors, 20 m apart
							389102	AVTP	11442	nominal depth 4310 m i.e. 270 m above ground
						:	389103	ThCh	1296/ 1961	nom recorder depth 4312 m i.e. 268 m above ground 11 sensors, 20 m apart
						:	389104	AVTP	11348	nominal depth 4528 m i.e. 52 m above ground
							389105	MiCat	206	nominal depth 4529 m i.e. 51 m above ground
							-	AR	428	48 m above ground

Table 2 Mooring activities in the Vema Channel

Abbreviations

- AVTP Anderaa Current Meter incl. pressure sensor
- ThCh Aanderaa Thermistor Chain, recorder / chain
- MiCat MicroCat moored CTD by SeaBird, Inc.
- WD WatchDog bouy built at IfM Kiel
- AR Acoustic Release by MORS

Einsatz-	Bodenab-				Gerätetyp	Rotor	Gerätins	Gerāt aus	Rotor
tiefe in m	stand in m	Reck in %	Ist-Länge	in m	und Nr.:	los	Wasser	dem Wasser	fest
						UTC	UTC		
		-							
	i I								
					Senderschwimm	er			
	Ì				S.Frequenz :				
	570		0.75 Vatto		Mhr Arres# 7744	•	15:24		
			0.75 Kette	Ť					
				-	9 Banthas		15.20		
				æ	o praimos		13.28		
а -			30						
				æ					
	490		Anaderaa TR8/200m	h	8 Benthos		15:35		
			<u> </u>	ſ	A-TR /295		15:35		
			170		A-TK 1960		16:06		
			120						
				\sim					
			100		Blubb				
				ф	6 Benthos				
	270		Asuderan		A.VTPL I Ada	14:01	16:11		
	71		Anderan			10.00	1.11		
			TR8/200m		A-TR 1296		10:11		
					A-1K [Y6]		16: 41		
			120						
				þ	Blubb				
			100						
				<u>م</u>	8 Benthos	10.00			
			RCM 8		A-VTPL // 348	16:47	16:49		
	50		Sea-Bird	6	37SM16832-020	6			
			Mors						
			AR 661 CS		AkAuslöser		16:49		
				<u>+</u>	INT. 428		/		
			0.75 Kette				ا الديريونيون ورويونيون وروي		للمتحاجبين أرفيهمين
1			2.00%+++		Schäk	el-Ring-Sc	häkel		Wirbel
			100014		Entwurf:	D.Carls	en		
Schiff/Expe	dition MET	EOR 41-3	Schiff/Exnedit	ion	<u> </u>	Veranke	rungs Nr.	V 389 - 01	
Auslegedat	um 21.0	4.98	Aufnahmedati		Institut für Meereskunde Kiel Physik				
Protokollfül	hrer-in S.	Becker	Protokollführe	r-in		Searahia	t. Vama K	anal / Snd - A+1	antik
Lottiefe	4600		von Tiefe			Posision	· (Daess CI	Sact)	
auf Tiefe	16:54		Zeitmeridian	UTC		310/6	1.24'5	039° 20	2.03'W

Fig. 9 Design of IfM mooring V-389 which was moored in the Vema Channel. For details see Table 2 $\,$

Fig. 10 Topographic charts from the eastern side of the Vema Channel taken in January 1991 during METEOR cruise M 15 (a, top) and during METEOR cruise M 41/3 (b, see right page) in April 1998

Fig. 10 b

Table 3 Near-bottom CTD and salinometer values from the Vema Sill, 1972 - 1998	3 (acc. to
Zenk and Hogg 1996; Hogg and Zenk 1997)	

Expedition mm/yy	Sta N	. Pro. Io No	θ °C	Acc.T mK	S _{CTD} raw	S _{CTD} corr	S _s No 1	ali 2	A 3	cc.S
Cato 11/72	14		-0.175							n yan na maraka na sana
Geosecs 11/72	59		-0.180							
CHAIN 4/74	4		-0.188			- 				
ATLANTI 10/79	S II 76		-0.192	*******						
ATLANTI 5/80	S II 12		-0.181							
METEOR 1/91	15 49	47	-0.185	±2						
METEOR 2 12/92	22 43		-0.155							
COROAS I 3/93	§ 24		-0.140							
COROAS I 3/94	I§		-0.134							
POLAR- STERN 10/94	128	31	-0.158	±2	34.655		34.683	34.683	./.	
METEOR 3 3/96	4 49	5	-0.156	±2	34.657	34.665	34.6649	34.665 ₁	34.6637	±0.003
METEOR 4 4/98	-1 212	4	-0.136	±2	34.670	34.671 ₈	34.673 ₀	34.6724	./.	±0.003

[§] Kindly provided by Y. Ikeda, University of Sao Paulo.

Fig. 11 Diagram of all pairs of salinity (S) and potential temperature (θ) from Sections at 24°S and 9°W. Data were interpolated in 2 dbar steps prior to plotting. Abbreviations: TW - Tropical Surface Water, SACW - South Atlantic Central Water, AAIW - Antarctic Intermediate Water, NADW - North Atlantic Deep Water, CDW - Circumpolar Deep Water (u - upper, 1 - lower), AABW - Antarctic Bottom Water. Diagonal lines of equal densities are referenced to the surface (σ_{μ} / kg m⁻³)

Fig. 12 DVS plots of surface temperatures and salinities on various track lines (see top of graphs). In (a) we have included 10 m CTD temperature values. They appear to ly systematically above the two ship's own surface thermometer readings. See also Fig. 6

Fig. 12 continued

Fig. 13 Diagram of all pairs of salinity and temperature from the surface of sections at 24°S (+ and *) and 9°W (+ with o) recorded by the *DVS* system. Values * and + differ by their location east or west of 18°W. Note that data feature two clusters. σ_t lines (kgm⁻³) are overlaid

Fig. 14 Salinity (a) and potential temperature (b) sections along 9°W in the deep Angola Basin east of the Middle Atlantic Ridge. The distribution of water masses is discussed in the text. Note that no water with $\theta < 2.0$ °C reaches the Angola Basin, i.e. Antarctic Bottom Water is absent

Fig. 15 Salinity (a) and potential temperature (b) sections along 24° S. The center of the Middle Atlantic Ridge (MAR) is situated at ~ 13.5°W. Note the drastic differences between the stratification on the eastern side, i.e. in the Angola Basin and in the Brazil Basin on the western side of the MAR. North Atlantic Deep Water features a deep front preventing this water mass from penetrating into the Angola Basin. The western abyssal is filled with Antarctic Bottom Water ($\theta < 2^{\circ}$ C). No such water is present in the eastern abyssal

Fig. 16 Topographic map of the Vema Channel and its northeastern extension. The 4000 m isobath is an optimal indicator for the channelized spreading of Antarctic Bottom Water ($\theta > 2^{\circ}$ C) while filling the deep Brazil Basin

Fig. 17 Salinity (a) and potential temperature (b) sections from the Vema Sill below 2500 m. In the right subfigure we have included the position and length of IfM mooring V-389 (see Table 2). Note the asymmetric horizontal property distribution in the range below ~3800 m. For details see text

Fig. 18 Sections as in Fig. 15, however from the Vema Extension. Note the isolated deep channel that prevents Antarctic Bottom Water to be mixed more rapidly with its surrounding water masses then farther north in the inner Brazil Basin

Fig. 19 Diagram of potential temperature vs. salinity (θ /S) from Sta. 212 (+) and 215 (o) from the Vema Sill (see Figs. 2 and 3) and from the Vema Extension (see Fig. 2)

Fig. 20 Bottom oriented profiles of potential temperature from section (a) at the Vema Channel and (b) the Vema Extension. Note the homogenized temperature on the sill also seen in Fig. 18

Fig. 21 Long-term CTD temperature time series from the Vema Channel. The newest data point from M 41 shows again increased temperatures. In fact, the latest value of $\theta_{min} = -0.136^{\circ}$ C measured on Sta. 212 (see Figs. 3 and 10) is among the highest in the total time series from the sill region in the Vema Channel

Table	4a	LA	D	CP	Log
-------	----	----	---	----	-----

		LADCP	Tiefe	Date	Time, down	Posi., down	Posi., down	Time, up	Posi, up	Posi up	Time up	Posi un
Pr.	Stat	Start		(Start, End)	10m (CTD	10m (CTD	10m (DVS	10m.	10m (CTD	10m (DVS	10m End	10m
No.	No.	(UTC)	(m)	yyyy,mm,dd	Prot)	Prot)	Stream)	Start	Prot)	Stream)	(DVS)	(DVS End.)
				yyyy,mm,dd	hh,mm,ss	gg,mm.mm	gg,mm.mmm	hh,mm,ss	gg,mm.mm	gg.mm.mmm S	hh.mm.ss	gg mm mmm S
					(UTC)	gg,mm.mm	gg,mm.mmm		gg,mm.mm	gg.mm.mmm		gg.mm.mmm
					1	28,26,34 S	Wrong time		28 26 48 S		<u> </u>	68,
1	208	15,37	4387	1998,04,20	16,46,35	40,54.60 W	in protocol	19.43.35	40.54.69 W			
						,			,			
						31,11.99 S	31,11.987 S		31.12.11 S	31.12.108 S		31 12 152 8
2	210	17,24,48	4611	1998,04,21	17,45,05	39,23.93 W	39,23.928 W	20,38,40	39,23.79 W	39,23.784 W	20.41.40	39.23.812 W
<u> </u>									,	,	,, .	
				1998,04,21		31,12.04 S	31,12.003 S		31,12.27 S	31,12.258 S		31,12.263 S
3	211	21,36,54	4574	1998,04,22	22,02,13	39,21.01 W	39,21.055 W	00,43,45	39,21.02 W	39,20.989 W	00,47,45	39,21.019
L	ļ		ļ						(End)			
						31,12.06 S	31,12.057 S		31,12.05 S	31,12.027 S		31,12.046 S
4	212	" " "	4475	1998,04,22	01,47,12	39,18.88 W	39,18.872 W	04,40,54	39,19.13 W	39,19.121 W	04,43,45	39,19.132 W
L			ļ						(End)			
			ł			31,12.02 S	31,12.019 S		31,11.98 S	31,11.985 S		31,12.000
5	213	-''-	4065	1998,04,22	05,58,37	39,16.00 W	39,16.008 W	08,20,00	39,15.98 W	39,15.978 W	08,23,15	39,15.968
ļ									(Start)			
		10.00.10				26,53.99 S	26,53.943 S		26,53.97 S (S)	26,53.972 S		26,53.949 S
6	214	19,09,19	3784	1998,04,23	19,21,38	33,54.96 W	33,54.934 W	21,48,03	33,55.00 W	33,55.007 W	21,51,07	33,54.994 W
									26,53.95 S (E)			
									33,54.99 W			
7	215		1505	1998,04,23		26,41.96 S	26,41.956 S		26,41.98 S (S)	26,41.978 S		26,41.996 S
1	215	1	4/85	1998,04,24	23,56,07	34,14.01 W	34,14.005 W	02,59,19	34,14.00 W	34,14.001 W	03,02,21	33,14.019 W
									26,42.00 S (E)			
	<u> </u>					26.10.00.5	26170055		34,14.02 W	26.10.001.0		2610.000 0
0	216	06 55 41	1250	1000 04 24	07 00 07	26,18.00 S	26,17.995 S	00 50 40	26,18.00 S (A)	26,18.001 S	00.52.11	26,18.030 S
ð	210	00,55,41	4350	1998,04,24	07,09,27	34,56.17 W	34,56.165 W	09,50,40	34,55.99 W	34,55.988 W	09,53,41	34,55.950 W
									26,18.03 S (E)			
L	<u> </u>						1		34,55.95			

RV Meteor Cruise 41, Leg 3, Vitória - Salvador

		LADCP	Tiefe	Date	Time, down	Posi., down	Posi., down	Time, up	Posi, up	Posi, up	Time, up	Posi up
Pr.	Stat	Start		(Start, End)	10m. (CTD	10m (CTD	10m (DVS	10m.	10m (CTD	10m (DVS	10m End	10m
No.	No.	(UTC)	(m)	yyyy,mm,dd	Prot)	Prot)	Stream)	Start	Prot)	Stream)	(DVS)	(DVS.End)
				yyyy,mm,dd	hh,mm,ss	gg,mm.mm	gg,mm.mmm	hh,mm,ss	gg,mm.mm	gg,mm.mmm S	hh,mm,ss	gg.mm.mmm S
	<u></u>				(UTC)	gg,mm.mm	gg,mm.mmm		gg,mm.mm	gg,mm.mmm		gg,mm.mmm
						25,53.97 S	25,53.965 S		25,54.00 S (A)	25.53.996 S		25 53 986 S
9	217	?	4190	1998,04,24	16,47,49	35.38.88 W	35,38.881 W	19,26,15	35,39.01 W	35.39.005 W	19 29 15	35 39 014 W
									25,53.99 S (E)			
									35,39.01 W			
						23,48.93S	23,48.904 S		23,48.95 S	23,48.950 S		23.48.962
10	218	09,58,05	5215	1998,04,28	10,17,19	20,00.01W	20,00.009 W	13,31,27	19,59.78W(A)	19,59.774 W	13.34.29	19.59.756
									23,48.965	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
									19,59.75W(E)			
						23,49.57 S	23,49.570 S		23,49.57 S	23,49.571 S		23,49.580S
11	219	09,57,43	3860	1998,04,29	10,09,49	16,16.34 W	16,16.333 W	12,38,38	16,16.34 W(A)	16,16,339 W	12,41,42	16,16.320W
	ł								23,49.57 S			
									16,16.33 W			
									(E)			
10	220	00.40.00				23,40.18 S	23,40.180 S		23,40.21 S	kein DVS!		kein DVS
12	220	02,43,28	3850	1998,04,30	03,01,14	15,00.09 W	15,00.090 W	05,20,38	14,59.94 W(A)		05,30,55	
									23,40.21			-
									14.59.94W (E)			
12	221	11 22 00	0100	1000 04 00		24,09.97 S	24,09.972 S		24,09,88 S	24,09,876 S		24,09.881 S
13	221	11,23,09	3130	1998,04,30	11,49,45	13,59.81 W	13.59.817 W	13,54,48	13,59.56 W	13,59.559 W	13,57,56	13,59.546 W
									24,09,88 S			
l	<u> </u>								13,59,55 W			
14	225	00.05.00	2740	1000 05 01	0.0.10.70	24,10.83 S	24,10.827 S		24,10.77 S	24,10.767 S		24,10.777 S
14	225	08,05,08	2740	1998,05,01	08,19,59	13,23.07 W	13,23.074 W	10,13,18	13,23.01 W	13,23.005 W	10,16,27	13,23.036 W
									24,10.78 S			
	<u> </u>		<u> </u>			24.10.05.5	24.10.045.0		13,23,07 W		1	
15	226	15 25 02	2015	1009 05 01	16 02 21	24,10,05 S	24,10.045 S	10.20.20	24,10.05 S	24,10.767 S	10.00.00	24,10.041 S
15	220	15,25,02	3865	1998,05,01	16,02,21	12,18.01 W	12,18.014 W	18,30,38	12,17.86 W	13,23.005 W	18,33,38	12,17.852 W
			1						24,10.04 S			
L	<u> </u>	1	1	<u>l</u>	1	l	<u> </u>	<u> </u>	12,17.85 W]	<u> </u>	<u> </u>

39

4.2 Tracer-Oceanography

(C. Rüth, P. Hebbeln)

The main interests of this cruise were the flow of Antarctic Bottom Water (AABW) through the Vema Channel into the Brazil Basin and the pathways of North Atlantic Deep Water (NADW) across the Mid Atlantic Ridge (MAR) into the Angola Basin. An L-shaped section across the MAR at 24°S and along its eastern flank at 9°W intersects the WOCE A9 cruise at both ends and thus closes a box within which NADW presumably crosses the MAR (see Speer et al. 1995). Helium measurements in the MAR-region are also expected to provide more information about helium-input along the MAR-crest, which is indicated by data aquired during the WOCE cruises A8, A9, and A10.

The tracers CFC's and tritium are of anthropogenic origin and have a well known timedependent input history at the ocean surface. Thus they are used not only to trace newly formed water masses but also to study the timescale of their spreading into the oceans. Both, AABW and NADW show enhanced CFC and tritium concentrations.

Helium-Isotope measurements are used to trace terrigenic helium wich enters the ocean at Mid Ocean Ridges. Because of its slow spreading rate the MAR is thought to be a weak or insignificant source of helium regarding the ocean interior. Helium detected in the South Atlantic is of Pacific origin and reaches the South Atlantic with the Antarctic Circumpolar Current (ACC). Thus, helium in the South Atlantic is used as a tracer for circumpolar water masses. AABW and CDW (Circumpolar Deep Water) show high helium-isotope ratios, whereas NADW is characterised by relatively low values. Helium is therefore a valuable tracer to study the pathways and the mixing processes of these water masses. Recent data however, did indicate some helium input along the MAR-crest, which is investigated further on the MAR-transect of this cruise.

A total of 240 helium-, 144 tritium-, and 400 CFC-samples were drawn at most hydrographic stations from standard niskin bottles (Table 5). The distribution with depth was mainly chosen with respect to AABW and NADW and is given in the table below. For each CFC-sample 100 ml water is filled into a glass ampoule, which is then flame-sealed and shipped to our laboratory in Bremen. There, the CFC-11, CFC-12, CFC-113, and CCL4 concentrations are measured with a gaschromatographic system. For the helium-analysis, 40 ml of seawater are filled into a copper tube which is then pinched off at both ends. For tritium, 1 l of water is

sampled into glass bottles. Both, helium and tritium are measured in Bremen in a dedicated helium-isotope mass-spectrometric system. For the helium-data, the concentrations of ⁴He, ³He and Neon as well as the helium-isotope ratio are measured. Rather than measuring tritium directly, all the gas is extracted from the water sample and ³He is detected as a result of the tritium decay. The tritium content of the water sample is then determined using the ³He concentration together with the storage time of the extracted sample.

Station/	Bottle	Depth	CFC-	Helium-	Tritium-	Station/	Bottle	Depth	CFC-	Helium-	Tritium-
Profile		[m]	ampoule #	sample #	sample #	Profile		[m]	ampoule #	sample #	sample #
** *******											
210/2	1	4660	2714	1	1	213/5	5	3600	2765	48	****
210/2	2	4610	2704	2							
210/2	3	4500	2707	3	2	214/6	1	3812	2774	49	
210/2	4	4250	2718	4	3	214/6	2	3750	2773	50	
210/2	5	4000	2724	5	4	214/6	3	3600	2771	51	
210/2	6	3750	2717	6	5	214/6	5	3200	2768	52	
210/2	7	3500	2706	7	6	214/6	5	3200	2770,2768	53	
210/2	8	3250	2705	8	7	214/6	6	3000	2775	54	
210/2	9	3000	2713	9	8	214/6	7	2750	2755	55	
210/2	10	2600	2709	10	9	214/6	8	2500	2759	55	
210/2	11	2300	2708	11	10	214/6	9	2250	2760	56	
210/2	12	2000	2715	12		214/6	10	2000	2758	57	
210/2	13	1500	2730	13	11	214/6	11	1600	2761	58	
210/2	14	1000	2723	14	12	214/6	12	1300	2757	59	
210/2	15	750	2728	15		214/6	13	1000	2782	59	***
210/2	16	500	2721	16	13	214/6	14	800	2783	60	
210/2	17	300	2710	17		214/6	16	500	2746,2781	61	
210/2	18	200	2719	18	14	214/6	17	350	2766	62	
210/2	19	100	2729	19	15	214/6	18	250	2767	63	
210/2	21	100	2722	20	16	214/6	19	150	2769	64	
						214/6	21	100	2763	65	
211/3	1	4590	2754	21							
211/3	2	4520	2741	22		215/7	1	4853	2787	66	33
211/3	3	4500	2744	23		215/7	2	4800	2791	67	34
211/3	4	4250	2742	24		215/7	3	4500	2792	68	35
211/3	5	4000	2743	25		215/7	4	4250	2788	69	36
						215/7	5	4000	2798	70	
212/4	1	4480	2731	26	17	215/7	6	3750	2789	71	37
212/4	2	4430	2732	27		215/7	7	3500	2780	72	
212/4	3	4400	2733	28	18	215/7	8	3250	2779	73	38
212/4	4	4250	2735	29	19	215/7	9	3000	2790	74	
212/4	5	4000	2727	30	20	215/7	10	2600	2762	75	39
212/4	6	3750	2726	31	21	215/7	11	2300	2778	76	
212/4	7	3500	2738	32	22	215/7	12	2000	2777	77	40
212/4	8	3250	2737	33	23	215/7	13	1500	2801	78	41
212/4	9	3000	2734	34	24	215/7	14	1000	2802	79	42
212/4	10	2600	2736	35	25	215/7	15	750	2784	80	
212/4	11	2300	2720	36	26	215/7	16	500	2785	81	43
212/4	12	2000	2725	37		215/7	17	300	2793	82	44
212/4	13	1500	2739	38	27	215/7	18	200	2786	83	45
212/4	14	1000	2747	39	28	215/7	19	100	2803	84	46
212/4	15	750	2740	40	29	215/7	21	100	2800	85	47
212/4	16	500	2748	41	30			100			
212/4	17	300	2764	42		216/8	1	4380	2611	86	48
212/4	18	200	2752	43	31	216/8	2	4350	2606	87	49
212/4	19	100	2751			216/8	3	4300	2629	88	50
212/4	21	100	2750	44	32	216/8	4	4150	2607	89	51
						216/8	5	4000	2609	90	
213/5	1	4070	2753	45		216/8	6	3800	2608	91	
213/5	2	4020	2756			216/8	7	3500	2797.2612	92	
213/5	3	4000	2772	46		216/8	8	325	2605	93	-
213/5	4	3800	2745	47		216/8	9	3000	2621	94	

Table 5 Sample collection for tritium, helium and CFC's

Table 5 continued

Station/	Bottle	Depth	CFC-	Helium-	Tritium-	Station/	Bottle	Depth	CFC-	Helium-	Tritium-
Prome		Imj	ampoule #	sample #	sample #	Prome		Imj	ampoute #	sample #	sample #
216/8	10	2600	2610	95		219/11	14	800	2691	156	88
216/8	11	2300	2609	96		219/11	15	600	2692		
216/8	12	2000	2604	97		219/11		500 200	2693,2676	157	89
216/8	13	1000	2616	98 99		219/11	18	200	2678	158	90
216/8	15	750	2615	100		219/11	19	100	2675	159	
216/8	16	500	2618	101		219/11	20	500	2689		
216/8	17	500	2617	102		219/11	21	100	2687	160	91
216/8	18	200	2620	103		000/10		2000	0.000	161	
216/8	19	500	2613	104		220/12		3890	2688	161	***
216/8	20	100	2628	105		220/12		3600	2696	162	
210/0		100	2020	100		220/12	4	3400	2694		
217/9	1	4215	2626	106	52	220/12	5	3200	2697		
217/9	2	4100	2627	107		220/12	6	3000	2683	163	
217/9	3	4000	2794	108	53	220/12		2750	2698	164	
217/9	5	3750	2799	110	24 55	220/12	8	2300	2686	164	
217/9	6	3250	2796	111		220/12	10	2000	2685	165	
217/9	7	3000	2625	112	56	220/12	11	1600	2700		
217/9	8	2600	2624	113	57	220/12	12	1300	2703		
217/9	9	2300	2623	114		220/12	13	1000	2508	166	
217/9	10	2000	2630	115	58	220/12	14	800	2506		
217/9		1600	2631	116		220/12	15	600 500	2505	167	
217/9	12	1000	2632	117	39	220/12	10	300	2504	167	
217/9	14	800	2639	119	60	220/12	18	200	2702		
217/9	15	600	2640	120		220/12	19	100	2509		
217/9	16	400	2637		61	220/12	20	500	2507		
217/9	17	300	2638	121		220/12	21	100	2510	168	
217/9	18	200	2649		62	001/10		2170		1.00	
217/9	20	100	2642	122	63 64	221/13	2	3170	2522	169	
217/9	20	100	2634	123	65	221/13	3	3000	2520	170	
		100		120	00	221/13	4	2750	2523	171	
218/10	1	5150	2657	124	66	221/13	5	2500	2513	172	
218/10	2	5100	2654	125		221/13	6	2250	2512	173	
218/10	3	5000	2646	126	67	221/13	7	2000	2518	174	
218/10	4	4750	2648	127		221/13	8	1750	2516	175	
218/10	6	4250	2643	128		221/13	9	1500	2514		
218/10	7	4000	2650	130	69	221/13	10	1250	2515		
218/10	8	3600	2655	131		221/13	11	1000	2525		
218/10	9	3300	2653	132	70	221/13	12	800	2527,2530		
218/10	10	3000	2666	133		221/13	13	700	2528		
218/10	11	2600	2673	143	71	221/13	14	600 500	2526	***	
218/10	13	2000	2659	135	72	221/13	15	400	2524		
218/10	14	1500	2658	137	73	221/13	17	300	2519		
218/10	15	1000	2656	138	74	221/13	18	200	2529		
218/10	16	750	2661	139	75	221/13	19	100	2531		
218/10	16	750		144		221/13	20	50	2532		
218/10	1/	300	2652	140	76	221/13	21	10	2533		
218/10	18	300	2045	141	78 78	225/14	1	2750	2537	177	97
218/10	19	200	2651	142	79	225/14	2	2700	2540	178	
218/10	20	500	2668		80	225/14	3	2500	2539	179	93
218/10	21	100	2670	143	81	225/14	4	2250	2541	180	
210/11		2000	0.000	1.40	00	225/14	5	2000	2543	181	94
219/11	1	3890	2663	145	82	225/14	6	1750	2542	182	
219/11	23	3600	2004 2667	140		225/14	/ 8	1250	2538	185	95
219/11	4	3400	2666	148	83	225/14	9	1000	2536	185	96
219/11	5	3200	2669	149		225/14	10	1000	2534	186	
219/11	6	3000	2662	150	84	225/14	10	1000			
219/11	7	2750	2676	151		225/14	11	900	2544		
219/11	8	2500	2680		85	225/14	12	800	2545		97
219/11	9 10	2250	2681	152	•	225/14	13	700	2551	187	 0.0
219/11	11	1600	2665	155	00 	225/14	14	500	2560 2540		98 98
219/11	12	1300	2674	155	87	225/14	16	400	2548		99
219/11	13	1000	2690			225/14	17	300	2547	189	

Table 5 continued

Station/	Bottle	Depth	CFC-	Helium-	Tritium-	Station/	Bottle	Depth	CFC-	Helium-	Tritium-
Prome	+	[m]	ampouic #	sample #	sample #	Prome	 	լոլ	атроше #	sample #	sample #
225/14	18	200	2546		100	232/18	4	3500	2835	209	106
225/14	19	100	2552	190	101	232/18	5	3000	2832	210	107
225/14	20	50	2553			232/18	6	2500	2830	211	108
225/14	21	10	2563	191	102	232/18	7	2000	2816	212	109
						232/18	8	1500	2817	213	
226/15	1	3997	2571	192		232/18	9	1250	2820	214	
226/15	2	3900		193		232/18	10	1000	2822	215	110
226/15	3	2600	2572	194		232/18	11	750	2832	216	
226/15	4	3400	2573	195		232/18	12	500	2829	217	
226/15	5	3200		196		232/18	13	300	2818	218	112
226/15	6	3000	2555	197		232/18	13	300		219	
226/15		2750	2554	100		232/18	14	200	2821	220	113
226/15	0	2500	2337	198		232/18	15	100	2833	221	115
220/15	0	2000	2550	199		232/18	17	100	2031	221	113
220/15	10	2230	2553			232/18	17	50	2824		114
226/15	11	1600	2561			232/18	21	10	2834	222	116
226/15	12	1300	2558			252/10	21	10	2021	he he ha	110
226/15	13	1000	2559			233/19	1	4200	2856	223	117
226/15	14	750	2556			233/19	2	4100	2860	224	118
226/15	15	750	2565			233/19	3	4000	2854	225	119
226/15	16	500	2566,2567			233/19	4	3750	2855	226	227
226/15	17	300	2568			233/19	5	3500	2837	227	121
226/15	18	200	2569			233/19	6	3250	2838		
226/15	19	100	2570			233/19	7	3000	2841		
226/15	20	50	2575			233/19	8	2600	2826		
226/15	21	10	2574			233/19	9	2300	2840		
						233/19	10	2000	2828		
229/16	1	3790	2588	200		233/19	11	1600	2842		
229/16	3	3400	2596	201		233/19	12	1300	2843		
229/16	3	3400		202		233/19	13	1000	2857		
229/16	4	3200	2590	203		233/19	14	800	2853		
229/16	5	3000	2591	204		233/19	15	600	2858		
229/16	6	2700	2593			233/19	16	400	2880	***	
229/16	/	2500	2592			233/19	17	300	2852		
229/10	8 0	2230	2304			233/19	18	200	2845		
229/10	10	1600	2579			233/19	19	100	2851		***
229/16	11	1300	2578			233/19	20	10	2870		
229/16	12	1000	2581			233/19	41	10	2839		
229/16	13	750	2583	205		234/20	1	3866	2850		
229/16	15	500	2584	204		234/20	2	3790	2847		
229/16	16	300	2585	204		234/20	3	3600	2874		
229/16	17	200	2586.2587	204		234/20	4	3400	2873		
229/16	18	100	2577	204		234/20	5	3200	2877		
229/16	19	50	2576	204		234/20	6	3000	2864		
229/16	20	10	2594	204		234/20	7	2750	2849		
-						234/20	8	2500	2848		
231/17	1	4375	2603			234/20	9	2250	2846		
231/17	2	4300	2598			234/20	10	2000	2844		***
231/17	3	4200	2595			234/20	11	1600	2862		
231/17	5	4000	2601			234/20	12	1300	2861		
231/17	6	3800	2600			234/20	13	1000	2863		
231/17	/	3300	2808			234/20	14	800	2882		
231/17	8	3250	2807			234/20	15	600	2865		
231/17	9	2600	2806			234/20	16	200	2866		
231/17	10	2000	2803			234/20	1/	300	28/8		
231/17	12	2000	2004			234/20	18	200	2883		
231/17	13	1500	2611			234/20	19	100	2884		
231/17	14	1000	2597			234/20	20	10	2007		
231/17	15	750	2599			4.54/40	41	10	2015		
231/17	16	500	2809			235/21	1	3950	2885	228	122
231/17	17	300	2810			235/21	2	3900	2886	229	
231/17	18	200	2812		***	235/21	จึ	3600	2888	230	123
231/17	19	100	2813			235/21	3	3600		231	
231/17	20	50	2815,2819	*		235/21	4	3400	2889	232	124
231/17	21	10	2814			235/21	5	3200	2892	233	125
						235/21	6	3000	2891	234	
232/18	1	4523	2839,2825	206	103	235/21	7	2750	2869	235	126
232/18	2	4300	2824	207	104	235/21	8	2500	2870	236	
232/18	3	4000	2836	208	105	235/21	9	2250	2871	237	127

Table 5 continued

.

Station/	Bottle	Depth	CFC-	Helium-	Tritium-
Profile		[m]	ampoule #	sample #	sample #
235/21	10	2000	2872		
235/21	11	1600	2881	238	128
235/21	12	1300	2879		
235/21	13	1000	2890		129
235/21	14	750	2887	239	131
235/21	16	500	2903,2893	240	132
235/21	17	300	2895		
235/21	18	200	2894	241	133
235/21	19	100	2896		
235/21	20	50	2897	242	134
235/21	21	10	2898		
236/22	1	3857	2407		135
236/22	2	3750	2414		
236/22	3	3600	2405		
236/22	4	3400	2900		136
236/22	5	3200	2901		

4.3 Water Sampling for Analyses of Stable Isotopes and Nutrients

(B. Jahn, T. Lützeler, A. Meyer, C. Moos, T. Westerhold)

At 21 stations a rosette with 21 101 Niskin bottles was used to obtain water samples from various depths of the water column. The rosette was always combined with a CTD-profiler for temperature and salinity measurements. At four stations a second rosette with 18 101 Niskin bottles was additionally used for water sampling in the upper water column between 0 and 250 m. All sites and sampling depths are listed in detail in Table 6. All water samples will be used for the analysis of stable carbon and oxygen isotopes ($\delta^{13}C$, $\delta^{18}O$) and nutrients.

For carbon isotopes, 2 x 50 ml of sea water was carefully filled into brown bottles to minimise degassing of dissolved CO_2 and to avoid exchange between water and atmosphere and was poisoned with 1 ml saturated HgCl₂ solution. All samples were closed airtight with melted paraffin. Water samples for oxygen isotope measurements were handled similarly, but were not poisoned. For nutrient analyses, 150 ml of sea water were filled into lighttight NALGENE polycarbonate flasks and immediately frozen at -20°C. Measurements for stable isotopes and phosphate concentration will be carried out at Bremen University.

Each site was chosen to represent one of five different hydrographic conditions. The first site (GeoB 5101) was located near Geosecs stations 57 and 60. This site will be used to calibrate samples from the lower water column and to check anthropogenic increase of ¹²C in surface waters. The five sites (GeoB 5103 to 5110) are located in the central and north-western Vema Channel to study the flow of AABW (Antarctic Bottom Water) from the Argentine into the Brazil Basin. A west-east transect of eight stations was chosen at 24°S from the Brazil Basin into the Angola Basin (GeoB 5111 to 5124). The overflow of deep and bottom water masses over the Mid-Atlantic Ridge into the Angola Basin between 24°S and 20°S will be studied at four sites at 9°W. Sampling depths of some sites, especially at 19°S, were taken to study the isotopic composition of Antarctic Intermediate Water. Site GeoB 5129 was chosen to get detailed information on the dependence of carbon isotope composition and nutrient supply to surface waters and into the thermocline. Water samples for tracer-oceanographic measurements were taken at most sites (see Chapter 4.2).

		Brazil B	lasin						Brazil B	asin				
GeoB	5101-1	Vema C 5103-1	5103-2	5105-1	5108-1	5109-1	5110-1	5110-4	1 ransec 5111-1	5112-1	5112-2	5113-1	5114-1	5118-1
Meteor #	208	210	210	212	215	216	217	217	218	219	219	220	221	225
bottle 1	4421	4659	200	4520	4853	4381	4231	200	5285	3893	200	3880	3195	2778
2	4301	4610	150	4501	4800	4351	4101	150	5202	3751	150	3801	3100	2731
3	4000	4500	100	4401	4499	4302	4001	100	5000	3602		3601	3000	2499
4	3501	4250		4300	4250	4151	3750		4750	3401	120	3402	2750	2250
5	3001	4001		4150	3999	3999	3501		4502	3199		3200	2500	2000
6	2501	3748		4000	3751	3800	3250		4252	3001		3000	2249	1751
7	2001	3500	50	3745	3500	3501	3001	50	4002	2750	100	2750	2001	1500
8	1501	3250		3500	3250	3251	2601		3602	2501		2501	1743	1249
9	1251	2999		3250	3000	3001	2301		3301	2250		2251	1500	1002
10	1001	2600		3000	2601	2601	2001		3002	2001	50	2001	1250	
11	751	2300	20	2599	2300	2301	1601	20	2602	1599		1601	1000	901
12	502	2001		2299	2000	2000	1301		2302	1300		1300	799	800
13	301	1501		2001	1500	1501	999		2001	999	20	1000	701	699
14	201	999		1500	1001	1000	801		1501	800		801	600	595
15	152	750		999	749	750	601	10	1001	600		600	501	400
16	127	501	10	749	500	500	400		750	501	10	501	400	300
17	101	301		499	300	300	301		503	300		299	300	199
18	76	202		300	200	200	200		301	200		200	200	100
19	51	100		199	100	101	100		201	99		101	100	50
20	26	10		49	10	51	49		50	49		51	50	10
21	10			10		10	11		11	9		10	10	

Table 6 Depths [dbar] of water samples for stable isotopes and nutrients

	Angola	Basin			Angola .	Basin A DOW			Angola -	Brazil B	asin
GeoB	5119-1	5119-2	5122-1	5124-4	5125-1	5126-1	5127-1	5128-1	1 ransec 5129-2	5136-3	5141-1
Meteor #	226	226	229	231	232	233	234	235	236	243	248
bottle 1	3997	200	3756	4375	4523	4231	3866	3954	250	1500	1200
2	3902	150	3699	4295	4301	4101	3800	3901	230	1250	900
3	3600	100	3400	4201	4000	4001	3600	3701	200	1000	700
4	3401		3201		3500	3749	3400	3400	170	750	500
5	3202		3001	4000	3001	3500	3200	3201	150	200	200
6	3001		2751	3800	2500	3252	3000	3001	120	150	150
7	2751	50	2500	3501	2001	3000	2751	2751	100	100	120
8	2501		2250	3251	1500	2602	2499	2501			
9	2249		2001	3000	1250	2302	2250	2250			
10	2002		1602	2600	1000	1999	2001	2001	75	75	100
11	1601	20	1300	2300	750	1600	1601	1600			
12	1300		1000	2000	500	1300	1301	1300			
13	1001			1499	300	1002	1001	1001	50	50	50
14	800		749	1000	200	802	802	750			
15	600		501	749	152	601	600	751			
16	500	10	300	500	126	400	501	500	20	20	20
17	300		200	302	101	301	300	300			
18	201		100	200	74	201	201	200			
19	100		50	99	51	100	101	102	10	10	10
20	50		12	50	26	50	51	54			
21	11			10	11	10	10	10			

4.4 Planktology

4.4.1 Chlorophyll (a)

(B. Jahn, T. Lützeler, H. Kuhlmann)

For the determination of chlorophyll (a) concentrations in the surface waters, 0,5 l of sea water was collected about three times a day from the ship's membrane pump and filtered onto glass fibre filters and frozen at -20°C. Unfortunalety, the first samples taken (no. 1 and 2) were contaminated by some pollution incurred whilst starting the pump. Chlorophyll (a) measurements by photometry will be done in the laboratory at the University of Bremen. 142 samples were taken during the cruise (Table 7). The chlorophyll (a) data will provide information about the seasonal and regional variations in biomass and will also be used to calibrate satellite-derived chlorophyll data.

Sample	Date	Time	Latitude	Longitude	Depth	Salinity	Temp.
No.		[UTC]	(S)	(W)	[m]	[%0]	[°C]
1	20.04.98	10:56	40°45,18′	027°51,49′	3003	35,84	23,3
2	20.04.98	10:56	40°45,18′	027°51,49′	3003	35,84	23,3
3	20.04.98	14:58	40°53,88′	028°22,14′	3409	36,51	23,7
4	20.04.98	14:58	40°53,88′	028°22,14′	3409	36,51	23,7
5	20.04.98	20:59	40°51,48′	028°32,70′	4000	36,41	23,4
6	20.04.98	20:59	40°51,48′	028°32,70′	4000	36,41	23,4
7	21.04.98	10:55	39°37,76′	030°41,88′	4671	35,70	20,9
8	21.04.98	10:55	39°37,76′	030°41,88′	4671	35,70	20,9
9	21.04.98	14:59	39°19,70′	031°14,00′	4560	35,70	20,8
10	21.04.98	14:59	39°19,70′	031°14,00′	4560	35,70	20,8
11	21.04.98	20:58	39°23,72′	031°12,10′	4608	35,72	20,8
12	21.04.98	20:58	39°23,72′	031°12,10′	4608	35,72	20,8
13	22.04.98	10:55	38°53,18′	030°54,02′	3996	35,76	21,5
14	22.04.98	10:55	38°53,18′	030°54,02′	3996	35,76	21,5
15	22.04.98	15:04	38°14,09′	030°23,07′	3639	36,12	22,4
16	22.04.98	15:04	38°14,09′	030°23,07′	3639	36,12	22,4
17	22.04.98	20:55	37°19,90′	029°39,95′	3256	36,13	21,9
18	22.04.98	20:55	37°19,90′	029°39,95′	3256	36,13	21,9
19	23.04.98	10:53	35°09,47′	027°54,84′	4444	36,04	23,4
20	23.04.98	10:53	35°09,47′	027°54,84′	4444	36,04	23,4
21	23.04.98	14:56	34°33,20′	027°25,25′	4318	35,90	23,3
22	23.04.98	14:56	34°33,20′	027°25,25′	4318	35,90	23,3
23	23.04.98	20:53	33°55,00′	026°54,00′	3785	36,00	23,3
24	23.04.98	20:53	33°55,00′	026°54,00′	3785	36,00	23,3
25	24.04.98	10:55	34°56,04′	026°17,98′	4349	35,98	24,1
26	24.04.98	10:55	34°56,04′	026°17,98′	4349	35,98	24,1
27	24.04.98	14:43	35°19,11′	026°05,12′	4235	36,46	24,9
28	24.04.98	14:43	35°19,11′	026°05,12′	4235	36,46	24,9
29	24.04.98	20:58	35°38,40′	025°54,31′	4176	36,25	24,7

Table 7 List of surface water samples for chlorophyll (a) measurements

Sample	Date	Time	Latitude	Longitude	Depth	Salinity	Temp.
No.		[UTC]	(S)	(W)	[m]	[‰]	[°C]
30	24 04 98	20:58	35°38.40′	025°54.31′	4176	36,25	24,7
31	25.04.98	10:55	34°14.81′	025°42,77′	4624	36,33	24,9
32	25.04.98	10:55	34°14.81′	025°42,77′	4624	36,33	24,9
33	25.04.98	14.44	33°26.42′	025°36.31′	4585	36,41	24,9
34	25.04.98	14.44	33°26.42′	025°36.31′	4585	36,41	24,9
35	25.04.98	20.56	32°07.50′	025°25.81′	4895	35,99	23,7
36	25.04.98	20.56	32°07 50′	025°25.81′	4895	35.99	23.7
37	26.04.98	09.59	29°22 09'	025°03 72′	4984	36.54	25.7
39	26.04.98	09.59	29°22,09′	025°03,72′	4984	36.54	25.7
30	26.04.98	13.46	29°22,09 28°33 67′	024°57 56′	5382	36.73	25.8
39 40	26.04.98	13.46	28°33,67′	024°57 56'	5382	36 73	25.8
40	26.04.08	10.56	20 33,07	024°46 56′	6909	36 31	24.9
41	20.04.90	19,50	27 13,07	024 46,56	6909	36 31	24.9
42	20.04.98	19.50	2/ 13,07	024 40,30	4467	37.03	263
43	27.04.90	09.24	24 23,85	024 24,22	4467	37.03	26,3
44	27.04.90	12.55	24 23,05	024 24,22	4934	36.76	20,5
45	27.04.90	12.55	24 21,44	023 54,50	1834	36.76	25,7
40	27.04.98	12:55	24 21,44	023 34,30	4656	26.84	25,7
47	27.04.98	18:55	24-11,01	022 49,49	4050	26.94	25,5
48	27.04.98	18:55	24°11,61	022-49,49	4030	26 79	25,5
49	28.04.98	08:53	20°11,79	023°50,44	6610	30,78	23,5
50	28.04.98	08:53	20°11,79	023°50,44	6010	30,78	23,5 25 A
51	28.04.98	12:53	19°59,82	023°48,91	5221	30,78	25,4
52	28.04.98	12:53	19°59,82	023°48,91	5221	30,78	25,4
53	28.04.98	19:10	18°59,70	023°49,99	6984	30,82	25,4
54	28.04.98	19:10	18°59,70	023°49,99	6984	36,82	25,4
55	29.04.98	08:52	16°24,17	023°50,58	4037	36,67	24,7
56	29.04.98	08:52	16°24,17′	023°50,58	4037	36,67	24,7
57	29.04.98	12:55	16°16,31′	023°49,56′	3873	36,70	24,9
58	29.04.98	12:55	16°16,31′	023°49,56′	3873	36,70	24,9
59	29.04.98	18:59	16°15,51′	023°49,50′	3840	36,72	24,9
60	29.04.98	18:59	16°15,51′	023°49,50′	3840	36,72	24,9
61	30.04.98	08:55	14°27,04′	023°56,53′	3692	36,50	24,3
62	30.04.98	08:55	14°27,04′	023°56,53′	3692	36,50	24,3
63	30.04.98	12:54	24°09,96′	013°59,71′	4809	36,50	24,5
64	30.04.98	12:54	24°09,96′	013°59,71′	4809	36,50	24,5
65	30.04.98	18:51	13°59,68′	024°08,81′	3182	36,70	24,5
66	30.04.98	18:51	13°59,68′	024°08,81′	3182	36,70	24,5
67	01.05.98	08:00	13°23,03′	024°10,81′	2733	36,70	24,3
68	01.05.98	08:00	13°23,03′	024°10,81′	2733	36,70	24,3
69	01.05.98	12:51	12°54,34′	024°10,49′	5027	36,70	24,3
70	01.05.98	12:51	12°54,34′	024°10,49′	5027	36,70	24,3
71	01.05.98	19:00	12°17,84′	024°10,05′	3759	36,60	24,1
72	01.05.98	19:00	12°17,84′	024°10,05′	3759	36,60	24,1
73	02.05.98	12:52	11°08,16′	024°10,22′	3691	36,51	24,1
74	02.05.98	12:52	11°08,16′	024°10,22′	3691	36,51	24,1
75	02.05.98	18:48	10°53,33′	024°10,18′	4177	36,51	24,0
76	02.05.98	18:48	10°53,33′	024°10,18′	4177	36,51	24,0
77	03.05.98	08:54	09°00,05′	024°09,99′	4464	36,39	23,4
78	03.05.98	08:54	09°00.05′	024°09,99′	4464	36,39	23,4
79	03.05.98	12:50	08°59.99′	023°34.80′	4026	36,39	23,6
80	03.05 98	12:50	08°59.99′	023°34.80′	4026	36.39	23,6
81	03.05 98	19:11	08°59.96′	022°23.97′	4199	36,58	23,8
82	03.05.98	19:11	08°59.96′	022°23.97′	4199	36,58	23,8
83	04.05.98	08:50	09°00,00′	020°42,88′	3924	36,70	24,1

Table 7 continued

Sample	Date	Time	Latitude	Longitude	Depth	Salinity	Temp.
No.		[UTC]	(S)	(W)	[m]	[‰]	[°C]
84	04.05.98	08:50	09°00,00′	020°42,88′	3924	36,70	24,1
85	04.05.98	12:50	09°00,09′	020°01,46′	3917	36,43	23,7
86	04.05.98	12:50	09°00,09′	020°01,46′	3917	36,43	23,7
87	04.05.98	18:55	09°25,22′	019°27,29′	3612	36,60	24,0
88	04.05.98	18:55	09°25,22′	019°27,29′	3612	36,60	24,0
89	05.05.98	08:54	09°27,52′	019°24,23′	4165	36,59	23,9
90	05.05.98	08:54	09°27,52′	019°24,23′	4165	36,59	23,9
91	05.05.98	12:50	09°45,23′	019°04,74′	3724	36,76	24,4
92	05.05.98	12:50	09°45,23′	019°04,74′	3724	36,76	24,4
93	05.05.98	18:59	09°43,17′	019°07,54′	3942	36,66	24,1
94	05.05.98	18:59	09°43,17′	019°07,54′	3942	36,66	24,1
95	06.05.98	08:50	10°06,03′	019°04,65′	3363	36,66	24,1
96	06.05.98	08:50	10°06,03′	019°04,65′	3363	36,66	24,1
97	06.05.98	12:50	10°11,58′	019°05,08′	3660	36,66	24,1
98	06.05.98	12:50	10°11,58′	019°05,08′	3660	36,66	24,1
99	06.05.98	18:56	10°41,00′	019°02,71′	3412	36,50	23,9
100	06.05.98	18:56	10°41,00′	019°02,71′	3412	36,50	23,9
101	07.05.98	08:52	11°03,76′	019°26,14′	3304	36,51	23,9
102	07.05.98	08:52	11°03,76′	019°26,14′	3304	36,51	23,9
103	07.05.98	12:36	11°31,79′	019°25,03	2998	36,53	24,1
104	07.05.98	12:36	11°31,79′	019°25,03	2998	36,53	24,1
105	07.05.98	18:55	12°40,23′	019°22,14	3227	36,71	24,4
106	07.05.98	18:55	12°40,23	019°22,14	3227	36,71	24,4
107	08.05.98	08:46	13°33,88	019°16,32	3287	30,77	24,0
108	08.05.98	08:46	13°33,88	019°16,32	3287	26.02	24,0
109	08.05.98	12:46	14°23,62	019°12,43	4004	26.02	23,1
110	08.05.98	12:46	14°23,62	019°12,43	4004	36,92	25,1
111	08.05.98	18:49	14°41,98	019°10,89	2270	26.02	25,2
112	08.05.98	18:49	14°41,98	019-10,89	2600	36,93	25,2
113	09.05.98	08:45	16°39,20	019'03,14	3600	36.83	25,0
114	09.05.98	12:42	16°39,20	019'03,14'	3660	36.81	25,0
115	09.03.98	12.43	16°36'76'	019 03,17	3660	36.81	25,0
110	09.05.98	12.43	17°15.05′	019°05,82′	3462	36.93	25.5
117	09.05.98	19.00	17°15,05′	019°05,82′	3462	36.93	25.5
110	10.05.98	19.00	18°43 12'	018°39.06′	4456	37.03	25.4
119	10.05.98	09.55	10°43,12′	018°39.06′	4456	37.03	25.4
120	10.05.98	13.02	19°01.76′	018°34.30′	4907	37,01	25,5
121	10.05.98	13.02	19°01.76′	018°34.30′	4907	37,01	25,5
123	10.05.98	19:48	19°23.45′	018°28,38′	4344	37,06	25,6
124	10.05.98	19:48	19°23.45′	018°28,38′	4344	37,06	25,6
125	11.05.98	09:55	22°55,42′	017°29,83′	4857	37,21	26,3
126	11.05.98	09:55	22°55,42′	017°29,83′	4857	37,21	26,3
127	11.05.98	13:44	23°31,20′	017°20,01′		37,32	26,5
128	11.05.98	13:44	23°31,20′	017°20,01′		37,32	26,5
129	11.05.98	19:50	24°44,98′	017°00,03′	5708	37,32	26,8
130	11.05.98	19:50	24°44,98′	017°00,03′	5708	37,32	26,8
131	12.05.98	09:57	27°26,47′	016°14,55′	5428	37,33	27,2
132	12.05.98	09:57	27°26,47′	016°14,55′	5428	37,33	27,2
133	12.05.98	14:15	28°18,02′	016°00,22′	5327	37,36	27,2
134	12.05.98	14:15	28°18,02′	016°00,22′	5327	37,36	27,2
135	12.05.98	19:57	29°22,16′	015°42,28′	5783	37,42	27,2
136	12.05.98	19:57	29°22,16′	015°42,28′	5783	37,42	27,2
137	13.05.98	10:50	31°36,10′	015°04,83′	4689	37,43	28,0

Table	7	continued
Table	1	continueu

.

Sample	Date	Time	Latitude	Longitude	Depth	Salinity	Temp.
No.		[UTC]	(S)	(W)	[m]	[‰]	[°C]
138	13.05.98	10:50	31°36,10′	015°04,83′	4689	37,43	28,0
139	13.05.98	14:47	32°6,72′	014°56,29′		37,47	27,9
140	13.05.98	14:47	32°6,72′	014°56,29′		37,47	27,9
141	13.05.98	20:55	33°01,94′	014°40,77′	4536	37,46	28,0
142	13.05.98	20:55	33°01,94′	014°40,77′	4536	37,46	28,0

Table 7 continued

4.4.2 Coccolithophorids

(R. Höppner, B. Kottke, S. Rath)

Coccolithophorids are biflagellate or coccoid unicells, whose longest dimensions rarely exceed 30 μ m and are most often < 10 μ m (Heimdal 1993). Over 150 known species of these minute unicellar, autotrophic, marine algae (Prymnesiophyceae) live in the present day oceans (Haq and Boersma 1978). They produce external plates of carbonate, named coccoliths. Coccoliths are a major component in almost all ocean sediments. Their distribution in the sediment is relatively well known, but information on their abundance, ecology and physiology in the surface water is rare. The occurrence and distribution of coccolithophores is directly dependent on the hydrography of the water masses.

With regard to these aspects, an investigation of the living coccolithophore communities in the South Atlantic was carried out in the uppermost water column. The water samples taken during the cruise will allow us a better understanding of the relationship between living communities and the assemblages in the sediments.

At 7 stations, 2 l water samples were taken from Niskin bottles of the rosette at 200 m, 150 m, 100 m, 50 m, 20 m and 10 m water depth (Table 8). In addition, 67 surface water samples were taken by the vessel's membrane pump system at about 5 m water depth during the whole cruise (Table 9) except in the territories off Brazil. Samples were taken about every second longitude plus every latitude, mostly at dawn, high noon and twilight. Generally, 2 liters of the water samples were immediately filtered through cellulose nitrate filters (25 mm diameter, 0,45 μ m pore size) by a vacuum pump.

Without washing, rinsing or chemical conservation the filters were dried at 40°C for at least 24 h and then kept permanently dry with silica gel in transparent film to protect them from humidity. The filtered material will be used for studies on the distribution and composition of

the coccolithophorid communities in the upper 200 m of the water column using a Scanning Electron Microscope (SEM). Species composition and abundance will be determined by identification and counting on measured filter transects. This is essential in order to broaden our knowledge of the paleoceanographic and climatic evolution of the coccolith assemblages.

No.	Date	Time	GeoB	Water	Sample	Latitude Longitude	Water	Salinity
			No.	depth	depth		temp.	uncorr.
	1998	[UTC]		[m]	[m]		[°C]	[psu]
I) 1	21.04.	20:48-21:04	5103-2	4614	10	31°12.11'S 39°23.75'W	21.0	35.73
I) 2					20		20.9	35.75
I) 3					50		20.6	35,99
I) 4					100		15.7	35.64
I) 5					150		15.0	35.57
I) 6					200		14.2	35.45
II) 1	24.04.	19:35-19:51	5110-2	4191		25°53.99'S 35°39.01'W		
II) 2					20		24.9	36.34
II) 3					50		22.3	36.37
II) 4					100		19.7	36.21
II) 5					150		18.2	35.9
<u> </u>					200		16.7	35.72
III) 1	29.04,	12:48-13:03	5112-2	3873	10	23°49,58'S 16°16,32'W	25.2	36.70
III) 2					20		25.1	36.72
111) 3					50		25.0	36.67
III) 4					100		19.9	36.17
111) 5					150		18.3	35.97
<u> </u>					200		16.1	35.60
IV) I	01.05.	17:39-18:53	5119-2	3865	10	24°10.07′S 12°18.03′W	24.4	36.61
1V) 2					20		24.4	36.63
IV)3					50		24.4	30.02
1V)4					100		20.1	25.80
10)5					150		17.4	25.50
$\frac{1}{1}$	05.05	0.50 1.21	5120.2	2940	200	10050 00'C 00046 20'W	13.9	26 71
$\frac{V}{1}$	05.05.	0.39-1.31	5129-2	3840	20	18 39,98 5 09°40,20 W	24.4	26 71
V) 2					20 50		24.4	36.71
V) 3 V) 4					100		10.3	36.02
$\sqrt{4}$					150		16.8	35.68
$\sqrt{3}$					200		14.5	35.00
$\frac{V}{V}$	07.05	22.21-23.30	5136-3	3227	10	19°21 96'S 12°42 69'W	24.6	36.72
$\frac{V1}{1}$	07.05,	LL.L1-LJ.J0	5150-5	5221	20	17 21.90 5 12 42.07 W	24.0	36 71
VI) 2					50		24.0	36 71
VI) 4					100		24.0	36.23
VI) 5					150		18.4	36.01
VI) 6					200		15.4	35 56
VII) 1	09.05	18.31-19.38	5141-1	3451	10	19°05 75'S 17°15 12'W	25.6	36.97
$\sqrt{10}$	07.05.	10.91-17,90	5171-1	JTJI	20	17 UJ.1J UJ.1 1J.14 W	25.5	36.96
VID 3					50		25.5	36.96
VII) 4					100		21.4	36.40
VII) 5					150		193	36.18
VII) 6				•	200		16.3	35.64

Table 8 Phytoplankton water profile sampling (coccolithophores)

No.	Date	Water	Latitide Longitude	Water	Salinity
		depth		temp.	
	1998	[m]		[°Ċ]	[psu]
1	20.04.	3009	28°03.70'S 40°48.43'W	23,2	35,84
2	20.04.	4388	28°27.19'S 40°54.79'W	23,6	36,51
3	20.04.	3813	28°45.55'S 40°44.78'W	23,0	36,29
4	21.04.	4669	30°41.67'S 39°37,85'W	20,9	35,76
5	21.04.	4581	31°14.23'S 39°19.96'W	20,9	35.69
6	21.04.	4575	31°12.04'S 39°21.01'W	20,9	35.70
7	22.04.	3992	30°53.88'S 38°52.93'W	21,5	35.76
8	22.04.	3618	30°10.22'S 37°57.81'W	22,6	36.16
9	22.04.	3884	29°18.27'S 36°53.03'W	22,1	36.11
10	23.04.	4441	27'47.93'S 35°01,00'W	23.3	35.95
11	23.04.	4067	27°05.70'S 34°09,30'W	23.3	36.00
12	23.04.	4042	26°48.62'S 34°03.59'W	23.1	36.09
13	24.04.	4348	26°17.99'S 34°56.03'W	24.1	35.97
14	24.04.	4232	25°55.45'S 35°36.62'W	24.8	36.32
15	24.04.	4188	25°54.31'S 35°38.37'W	24.7	36.23
16	25.04.	4696	25°38.08'S 33°39,50'W	24.9	36.43
17	25.04.	4884	25°28.48'S 32°27.27'W	24.6	36.16
18	25.04.	5055	25°92.26'S 31°46.12'W	24.2	35.88
19	26.04.	6534?	25°02.48'S 29°13.00'W	25.7	36.56
20	26.04.	6840?	24°53.10'S 28°00.07'W	25.6	36.60
21	26.04.	5337	24°43.41°S 26°47.11°W	25.1	36.33
22	27.04.	5072	24°24.18′S 24°25.35′W	26.3	37.03
23	27.04.	5014	24°16.95'S 23°28.98'W	26.1	36.94
24	27.04.	4583	24°09,54'S 22°33,21'W	25.4	36.75
25	28.04.	6534?	23°49,84'S 20°06,89'W	25.4	36.76
26	28.04.	5157	23°49.29'S 19°37.68'W	25,3	36,77
27	28.04.	4535	23°50.28'S 18°45.49'W	25,3	36,83
28	29.04.	3547	23°50.43°S 16°23.82°W	24,8	36,67
29	29.04.	2006	23°49.60°S 16°15,52°W	25,0	36,69
21	29.04.	3900	23°49.41 5 10°13.74 W	24,9	30.72 26 57
22	30.04. 20.04	2201	23 30.01 S 14 20.83 W	24,3	30.37
32	30.04.	3291	24 08.04 S 14 23.70 W	24,5	26.57
33	01.04	2370	24 09.34 5 13 40.19 W	24,2	30.37
34	01.05	2734	24 10.80 S 13 23.02 W	24,5	26.03
36	01.05	3914	24 10.08 5 12 18,51 W	24.2	26.62
30	01.05	3044	24 10.16 5 12 21.09 W	24,1	30,02
38	02.05	3197	24°00 80'S 11°20 37'W	23,5	36 52
39	03.05	4464	24°09 99'S 09°00 02'W	24,1	36.40
40	03.05	4667	23°12 36'S 09°00 01'W	23,4	36 53
41	03.05	4193	22°23 92'S 08°59 98'W	23,0	36.59
42	04.05	3071	20°39 21'S 09°00 05'W	23,8	36.68
43	04.05	4268	19°52 20'S 09°06 11'W	27,0	36.61
44	04.05	3885	19°07 19'S 09°40 72'W	23,8	36.74
45	05.05	4166	19°24 23'S 09°27 57'W	27,2	36.50
46	05.05	3890	19°02 52'S 09°44 29'W	23.7	36.77
47	05.05	3942	19°07 50'S 09°43 13'W	24.5	36.67
48	06.05	3660	19°05.14'S 10°11 55'W	24 1	36.66
49	06.05	3226	19°03.88'S 10°27 16'W	24.0	36.52
50	06.05	3411	19°02.71'S 10°40 99'W	23.9	36 48
51	07.05	3304	19°26.14'S 11°03.77'W	23.9	36.51
52	07.05	2584	19°23.74'S 12°01.02'W	24.3	36.50
53	07.05	3228	19°22.18'S 12°40 15'W	24 4	36 71
54	08.05.	3502	19°17,50'S 13°27,20'W	24.6	36.76

Table 9 Phytoplankton surface water sampling (coccolithophores)

No.	Date	Water depth	Latitude	Longitude	Water temp.	Salinity
	1998	[m]			[°C]	[psu]
55	08.05.	3631	19°11,38'S	14°39,21'W	24.9	36.86
56	08.05.	3859	19°06,64'S	15°12,57'W	25.0	36.94
57	09.05.	3660	19°03,20'S	16°36,80'W	24.9	36.83
58	09.05.	3820	19°04,15'S	16°51,12'W	25,4	36.94
59	09.05.	3939	19°05,40'S	17°09,14'W	25.3	36.94
60	10.05.	4513	18°37,66'S	18°44,77'W	25.5	37.01
61	10.05.	4344	18°28,38'S	19°23,45'W	25.6	37.01
62	10.05.	4471	18°11,63'S	20°24,09'W	25.8	37.08
63	11.05.	4819	17°29,19'S	22°57,84'W	26.3	37.21
64	11.05.	5081	17°14,99'S	23°49,11'W	26.5	37.22
65	12.05.	5441	16°15,06'S	27°24,75'W	27.2	37.14
66	12.05.	5264	15°53,24'S	28°23,02'W	27.1	37.38
67	12.05.	5783	15°37,60'S	29°38,98'W	27.3	37.44

Table 9 continued

J

,

4.4.3 Dinoflagellates

(A. Meyer, S. Schulz, A. Vink)

Dinoflagellates are unicellular, biflagellated algae forming a major constituent of the marine phytoplankton, and are amongst the most important primary producers of the present oceans. All dinoflagellates have a motile cellulosic thecate stage as the active stage in their life cycle. Approximately 10% of all dinoflagellate species also undergo a resting cyst stage during sexual reproduction, in which the cysts formed are usually organic-walled but may, in a few species, be calcareous ('calcispheres'). As an exception within the group of calcareous dinoflagellates, the species Thoracosphaera heimii is subjected to a calcareous-walled vegetative coccoid stage rather than a calcareous cyst stage. Organic- and calcareous-walled cysts, including the vegetative coccoid Th. heimii, are generally extremely resistant to degradation and may be preserved in large numbers in oceanic sediments (provided they lie above the lysocline). Studies concerning recent and sub-recent distributions of calcareous dinoflagellate cysts and their corresponding thecae are, to date, extremely limited. The studies being carried out at the University of Bremen focus primarily on the complex, interacting relationships between recent species distributions in the South Atlantic and environmental parameters such as temperature, salinity, light, nutrient content, stratification, etc. A knowledge of these interactions is extremely important for the interpretation of fossil dinoflagellate cyst assemblages in the sedimentary record and they may as such be applicable as proxies in palaeoceanography and palaeoenvironmental modelling. In order to improve our knowledge on the geographic and vertical distribution of individual species and to attempt culturing them for future experimentation, phytoplankton samples were collected during the cruise from variable depths of the water column, ranging from surface waters down to 150 m depth (calcareous dinoflagellates show a variable depth distribution but are generally found within tens of meters below the water surface as they are photosynthetic).

Surface water samples were acquired from a depth of approximately 5 m three times a day using the ship's membrane pump (*ca*. 07:00-11:00; 12:00-16:00 and 18:00-22:00 board time: see Table 10). The water was continuously passed over a 100 μ m pre-filter to remove zooplankton and then filtered over a 10 μ m gauze, thereby collecting the 10-100 μ m particle and organic matter fraction in a 1 liter collecting vessel. The amount of sea water passing through the vessel during filtration was measured accurately. The water samples were concentrated down to *ca*. 150 ml using a 5 μ m polycarbonate filter and a vacuum pump

system, and were subsequently scanned for living thecate dinoflagellates, calcareous dinoflagellate cysts and *Th. heimii*. Individual specimens were isolated and placed in sterile polyterene Cell WellsTM containing different types of culture media (f/2 35 ‰; K 35 ‰ and 0,2 μ m filtered sea water) or mixtures of two of these (ratio 1:1). As such, it was attempted to culture calcareous cyst-producing dinoflagellates under on board conditions using the local day/night cycle at temperatures between 20 and 25°C. Germination experiments and further routine culturing of these dinoflagellates (aimed at investigating various aspects of their ecology, productivity, life cycles, biomineralisation processes and systematics) will be carried out at the University of Bremen. After qualitative analysis, the water samples were transferred into 250 ml NALGENE polycarbonate flasks, fixated with 3-4% formaldehyde and stored in the dark at 4°C.

Table 10 Surface water samples taken for	dinoflagellate analyses.	Sampling wa	s carried out
through 10 µm membrane pump filtration			

Sample nr.	Start and	Latitude	Longitude	Water	Water	Salinity	Volume of
	end of	(°S) at start	(°W) at start	depth	temperature	-	water
	filtration	and end of	and end of				filtered
	(UTC)	filtration	filtration	<u>(m)</u>	(°C)	(%0)	(1)
4/20/a	10:00	27°42,81′	40°42,76′	3022	23,2		138
	13:58	28°14,79′	40°52,37′				
4/20/c	20:56	28°31,98′	40°51,78′	4014	23,4		250
	00:56	29°10,79′	40°30,41′				
4/21/a	09:59	30°32,60′	39°43,22′	4587	21,0	35,67	365
	13:54	31°11,19′	39°20,58′				
4/22/a	10:00	31°01,16′	39°02,25′	4182	21,2	35,91	273,5
	13:55	30°31,60′	38°24,85′				
4/22/b	15:01	30°23,37′	38°14,48′	3643	22,4		440
	19:00	29°52,77′	37°36,06′				
4/22/c	20:56	29°39,78′	37°19,75′	3288	21,8	36,11	460,5
	00:51	29°10,00′	36°42,60′				
4/23/a	10:00	28°01,52′	35°17,77′	4444	23,3	35,95	538,5
	13:55	27°32,77′	34°42,52′				
4/23/b	14:50	27°25,72′	34°33,79′	4351	23,4	35,91	396
	18:50	26°56,25′	33°57,68′				
4/24/a	12:35	26°17,99′	34°55,99′	4350	24,1	35,95	632
	16:44	25°53,99′	35°38,90′				
4/25/a	10:00	25°44,32′	34°26,44′	4554	24,7	36,38	164,5
	13:59	25°37,58′	33°36,02′				
4/25/b	14:50	25°36,20′	33°25,57′	4671	24,7	36,34	535
	18:50	25°29,37′	32°34,12′				
4/25/c	20:59	25°25,73′	32°06,83′	4894	23,8		669
	01:02	25°18,58′	31°13,48′				
4/26/a	09:58	25°03,74′	29°22,20′	4984	25,7	36,72	352
	13:55	24°57,32′	28°32,97′			,	
4/26/b	14:10	24°56,91′	28°28,79′	5366	25,7	36,77	426
	18:10	24°50,01′	27°36,84′				
4/26/c	19:52	24°47,02′	27°14,52′	5261	24,8	36,32	511
	23:59	24°40,05′	26°22,17′			•	

Sample nr.	Start and	Latitude	Longitude	Water	Water	Salinity	Volume of	
	end of	(°S) at start	(°W) at start	depth	temperature		water	
	filtration	and end of	and end of	•	-		filtered	
	(UTC)	filtration	filtration	(m)	(°C)	(%0)	(1)	
4/27/a	09:20	24°24,26′	24°24,33′	5090	26,3	37,02	246	
	12:46	24°21,70′	23°55,64′					
4/27/b	13:05	24°20,71′	23°51,86′		26,0	36,86	661	
	17:04	24°14,18′	23°08,38′					
4/27/c	18:45	24°11,76′	22°50,62′	4655	25,5		531	
	22:30	24°06,37′	22°10,68′					
4/28/b	13:40	23°48,97′	19°59,76′	5233	25,4	36,82	513	
	17:53	23°49,75′	19°12,89′					
4/28/c	18:54	23°49,92′	19°02,70′	4888	25,4	36,82	466	
	23:01	23°50,74′	18°15,50′					
4/29/a	08:50	23°50,61′	16°24,44′	4044	24,7	36,67	260	
· ·	10:07	23°49,59′	16°16,33′					
4/29/c	20:10	23°49,55′	16°15,43′	3835	24,9	36,73	662	
	23:00	23°45,83′	15°45,44′					
4/30/a	07:58	23°51,69′	14°36,71′	3927	24,5	36,70	484	
	11:41	24°09,94′	13°59,93′					
5/1/a	10:30	24°10,79′	13°21,72′	3994	24,3	36,63	856	
	14:32	24°10,28′	12°34,16′					
5/2/a	08:03	24°10,15′	11°40,74′	3676	23,8	36,50	443	
	10:52	24°10,28′	11°08,08′					
5/2/c	18:56	24°10,17′	10°51,74′	4074	24,0	36,51	619	
	22:55	24°10,00′	10°01,40′					
5/3/a	09:55	24°09,46′	09°00,09′	4447	23,4	36,40	475	
t i i i i i i i i i i i i i i i i i i i	12:55	23°34,04′	09°00,00′					
5/3/b	13:07	23°31,29′	09°00,03′	4573	23,7	36,46	724	
1	17:07	22°43,90′	09°00,01′					
5/4/a	10:25	20°24,66′	09°00,01′	4278	23,9	36,63	457	
	12:56	20°00,50′	09°00,11′					
5/4/b	15:35	19°59,83′	09°00,02′	3935	23,8	36,43	564	
	18:49	19°28,24′	09°24,41′					
5/4/c	19:01	19°26,15′	09°26,04′	4155	24,0	36,60	545	
	21:50	18°59,99′	09°46,25′					
5/6/c	15:37	19°04,98′	10°12,62′	3652	24,2	36,68	477	
	17:51	19°02,59′	10°40,95′					
5///a	10:15	19°26,09′	11°03,84′	3302	23,9	36,51	685	
<i>с (</i> с <i>и</i>	14:03	19°24,22	11°49,79′					
5///b	14:36	19°23,93′	11°57,00′	2671	24,2	36,69	808	
7 10 1	18:00	19°22,14	12°40,25'					
5/8/a	09:06	19°15,58'	13°38,14′	3170	24,8	36,83	205	
5/0/	13:19	19°11,99′	14°30,46′					
5/8/C	18:32	19°11,44	14°39,19	3630	24,9	36,90	635	
5/0.4	22:19	19°04,41	15°26,72	• • • • •				
5/9/0	15:19	19°03,12	16°36,75	3660	25,1	36,83	696	
5/10/1	18:25	19°05,89	17°15,11				010	
3/10/0	11:37	18-37,53	18~45,38	4434	25,5	37,01	910	
5/10/-	17:30	18~28,38	19~23,45	100 5				
5/10/C	18:56	18°16,00	20°08,13°	4885	25,8	37,04	719	
E/11/-	23:00	18~03,77	20~52,76				~ ~ *	
5/11/a	08:56	17~32,78	22~44,84		26,2	37,22	883	
5/11/4	13:00	1/-22,70	25°23,08°		26.5	0.5.6.4	m 1 -	
5/11/0	13:30	1/-19,6/	25 52,35		26,5	37,24	716	
	17:50	1/-07.75	24-13.34					

Table 10 continued

Sample nr.	Start and end of filtration	Latitude (°S) at start and end of	Longitude (°W) at start and end of	Water depth	Water temperature	Salinity	Volume of water filtered
	(UTC)	filtration	filtration	(m)	(°C)	(‰)	(1)
5/11/c	18:35	17°04,23′	24°27,96′	5483	26,6	37,25	733
	22:32	16°51,36′	25°14,20′				
5/12/a	08:56	16°17,80′	27°14,91′	5503	27,2	37,31	613
	12:54	16°04,74′	28°01,70′				
5/12/b	14:02	16°00,91′	28°15,41′	5346	27,2	37,35	736
	18:00	15°47,54′	29°03,31′				
5/12/c	18:25	15°46,47′	29°07,27′	5183	27,2	37,41	708
	22:29	15°35,82′	29°45,41′				
5/13/a	10:02	15°06,75′	31°29,40′	4712	27,5	37,27	565
	14:00	14°58,20′	31°59,37′				
5/13/b	14:10	14°57,91′	32°01,10′		27,9	37,44	604
	17:50	14°48,46′	32°34,42′				
5/13/c	18:00	14°47,86′	32°36,52′		27,9	37,47	595
	21:40	14°38,99′	<u>33</u> °08,00′				

Table 10 continued

In addition to acquiring surface water samples, approximately 30-40 1 of sea water was collected at 10, 20, 50, 100 m and occasionally at 75, 120 and 150 m water depth using a rosette (Multi Water Sampler MWS, cat. nr. 436918A). Samples were taken at 7 stations (positions and depths are listed in Table 11). In general, three or four 101 Niskin bottles were filled at each depth. The obtained water was passed over a 100 μ m mesh sieve and filtered with 5 μ m polycarbonate filters using a vacuum pump. The samples were concentrated to a volume of *ca*. 150 ml and subsequently treated in a similar manner to the surface water samples acquired from the membrane pump. All stored samples will be further analysed at the University of Bremen in order to provide more information on the composition, regional geographic distribution and the vertical distribution of calcareous dinoflagellate communities in the upper 150 m of the regions of the South Atlantic Ocean covered by the cruise.

Motile thecate dinoflagellates and calcareous cysts have been observed, though in relatively low numbers, in almost all the samples taken. Thecae and cysts concentrations were the highest in surface water samples, and were found in considerably lower numbers in the 10-100 m samples. No cysts were found in the 120 and 150 m water samples. The calcareous cyst association was predominated in all water samples by the occurrence of only two cyst species: *?Sphaerodinella tuberosa* and *Th. heimii*. The calcareous cyst species *?Sphaerodinella albatrosiana* and *Orthopithonella granifera* occurred sporadically and in very low concentrations. Organic-walled dinoflagellate cysts were not detected, which is not surprising as their corresponding thecae are not, unlike those of calcareous cysts, greatly adapted to oligotrophic (nutrient-depleted) areas. No obvious differences were noticed in cyst composition and quantity between samples taken at different times of the day. Approximately 200 specimens of calcareous dinoflagellate cysts were isolated for cultivation on board. The cells containing these cysts were scanned at regular intervals, in order to register when excystment and reproduction occurred. Those specimens which produced a sufficient number of new cysts and motile thecae were transported to the University of Bremen for experimentation.

GeoB Station		Date	Time	Water	Volume of	Latitude	Longitude	Water	Salinity
and de	pth of			depth	water			temp.	
sam	ples		(UTC)	(m)	filtered (l)	(°S)	(°W)	(°C)	(%0)
5103-2	10 m	21.04.98	20:48	4611	37,5	31°12,12′	39°23,75′	21,007	35,735
	20 m				38,1			20,983	35,757
	50 m				37,8			20,628	35,999
	100 m				39,0			15,707	35,642
5110-2	10 m	24.04.98	19:35	4198	*	25°54,00′	3 5 °39,01′	24,998	36,313
	20 m				25,8 *			24,951	36,343
	50 m				32,3			22,352	36,373
	100 m				38,5			19,754	36,210
5112-2	10 m	29.04.98	12:48	3867	28,5	23°49,57′	16°16,33′	25,216	36,708
	20 m				17,9 *			25,175	36,725
	50 m				26,4			25,010	36,675
	100 m				28,5			19,945	36,170
	120 m				30,8			19,131	36,104
	150 m				18,2			18,363	35,976
5119-2	10 m	01.05.98	17:39	3878	38,0	24°10,02′	12°18,00′	24,431	36,610
	20 m				38,6			24,429	36,631
	50 m				37,9			24,403	36,621
	100 m				39,0			20,196	36,177
5129-2	10 m	05.05.98	00:59	3840	28,6	18°59,98′	09°46,20′	24,454	36,710
	20 m				27,2			24,452	36,710
	50 m				27,3			24,453	36,709
	75 m				30,5			21,456	36,219
	100 m				28,1			19,370	36,026
5136-3	10 m	07.05.98	22:21	3227	29,5	19°21,99′	12°42,67′	24,691	36,721
	20 m				29,5			24,659	36,719
	50 m				29,1			24,612	36,714
	75 m				31,9			22,524	36,400
	100 m				28,8			20,416	36,233
5141-1	10 m	09.05.98	18:31	3451	29,0	19°05,75′	17°15,12′	25,621	36,970
	20 m				28,8			25,570	36,967
	50 m				28,7			25,543	36,968
	100 m				29,5			21,476	36,401
	120 m				31,1			20,423	36,340

Table 11 Water samples taken with the rosette (i.e. 101 Niskin bottles) at different water depths

* = 1 or more unclosed Niskin bottles.

4.4.4 Diatoms

(B. Jahn, T. Lützeler)

During the cruise, plankton was sampled for diatom analysis from surface waters (Table 12). The shipboard clean sea water pump system was used to filter sea water through a net with a mesh size of 10 μ m. The amount of water filtered depended on the plankton concentration. The water samples were collected during daylight hours for analysis of the diatom assemblage. The plankton was washed into Kautex bottles, poisoned with formaldehyd solution and stored at 4°C. The net was washed and used again. The plankton material will be investigated for the bulk composition of the biogenic detritus. The material will be further analysed in the laboratories at the University of Bremen.

Ta	ble	12	List	of	pumped	net	samples	for	diatom	anal	ysis
					1 1		1				2

			Start		4 <u>7</u> _1 =	·	End				
No.	Date	Time	Latitude	Longitude	Salinity	Temp.	Latitude	Longitude	Salinity	Temp.	Vol.
		(UTC)	(S)	(W)	[‰]	[°C]	(S)	(W)	[%0]	[°C]	[m³]
1	20.04.98	13:05 - 18:59	28°12,02′	40°50,80′	****	24,3	28°26,36′	40°54,69′		23,6	1,879
2	21.04.98	13:02 - 19:05	31°02,83′	39°25,54′	35,72	20,8	31°12,09′	39°23,75′	35,72	20,7	1,785
3	22.04.98	12:57 - 19:02	30°38,60′	38°33,77′	36,17	22,5	29°53,81′	37°37,21′	36,16	22,1	1,717
4	23.04.98	12:58 - 18:55	27°39,55′	34°50,72′	35,87	23,3	26°55,80′	33°57,20′	36,01	23,2	3,547
5	24.04.98	12:56 - 18:57	26°15,98′	34°59,63′	35,93	24,1	25°54,02′	35°38,98′	36,03	24,7	3,105
6	25.04.98	12:58 - 19:39	25°39,29′	33°48,77′	36,45	24,9	25°28,00′	32°23,82′	36,16	24,6	4,016
7	26.04.98	12:45 - 18:55	24°59,31′	28°46,84′	36,64	25,8	24°48,67′	27°27,01′	36,68	25,7	2,480
8	27.04.98	11:00 - 16:58	24°21,60′	24°04,18′	36,99	26,3	24°14,29′	23°09,29′	36,88	25,8	3,324
9	28.04.98	10:56 - 17:13	23°48,96′	19°59,90′	36,78	25,4	23°49,58′	19°21,78′	36,80	25,4	2,589
10	29.04.98	10:55 - 15:00	23°49,55′	16°16,35′	36,82	24,9	23°49,46′	16°15,45′	36,57	25,0	1,709
11	30.04.98	09:15 - 17:28	23°56,53′	14°27,04′	36,57	24,6	24°08,64′	14°02,58′	36,71	24,5	3,210
12	01.05.98	11:21 - 17:20	24°10,68′	13°12,13′	36,56	24,2	24°10,05′	1 2°18, 00′	36,60	24,1	2,607
13	02.05.98	11:43 - 17:35	24°10,24′	11°08,14′	36,50	24,0	24°10,23′	11°08,89′	36,50	24,1	1,905
14	03.05.98	10:54 - 16:54	23°57,94′	09°00,09′	36,39	23,4	22°46,62′	09°00,01′	36,52	23,8	2,737
15	04.05.98	11:11 - 17:15	20°15,87′	09°00,02′	36,73	23,7	19°43,55′	09°12,71′	36,50	23,9	2,824
16	05.05.98	11:00 - 17:13	19°19,22′	09°34,19′	36,59	24,0	19°07,52′	09°43,18′	36,65	24,1	3,065
17	06.05.98	11:06 - 17:16	19°05,11′	10°11,58′	36,60	24,1	19°03,31′	10°33,94′	36,66	24,1	2,985
18	07.05.98	11:11 - 17:11	19°25,75′	11°14,18′	36,51	24,0	19°22,54′	12°30,22′	36,67	24,4	2,790
19	08.05.98	11:05 - 17:10	19°13,84′	14°02,65′	36,84	24,8	19°11,00′	14°39,30′	36,90	24,9	3,215
20	09.05.98	11:08 - 17:05	19°03,14′	16°36,87′	36,83	25,0	19°04,69′	16°58,70′	36,94	25,5	3,304
21	10.05.98	11:13 - 17:01	18°38,66′	18°43,16′	37,05	25,5	18°22,02′	19°46,49′	37,07	26,0	2,925
22	11.05.98	11:55 - 18:05	17°23,88′	23°16,60′	37,18	26,4	17°05,78′	24°22,32′	37,73	26,7	3,039
23	12.05.98	12:04 - 18:20	16°07,53′	27°51,79′	37,36	27,2	15°46,60′	29°06,80′	37,41	27,2	3,095
24	13.05.98	14:08 - 19:47	14°57,99′	32°00,68′	37,42	27,6	14°43,45′	32°52,42′	37,49	27,9	2,974

4.4.5 Planktic Foraminifera

(H.-S. Niebler)

Sea surface water from about 5 m water depth was pumped using the ship's 'Junker pump'. The water was pumped on 6 days of the cruise for different time intervals of up to 25 hours (Table 13). The sea water was filtered using a plankton hand net (70 μ m mesh size), which was tied to the railing at the end of the working deck. Immediately after recovery, planktic foraminifera larger than 150 μ m were observed under a binocular and separated from other plankton. The work was focused on the three most abundant species *Globigerinoides trilobus*, *Globigerinoides ruber* (white) and *Globigerinoides ruber* (pink), because in tropical and subtropical regions these species are most important for paleoceanographic research.

Due to very low fertility in the surface water masses of the central Subtropical Gyre only very few foraminifera were found per single sample. The foraminifera were picked and put into Fema-cells, but the amount was absolutely insufficient for oxygen isotope analysis by mass spectrometery (recovery: between 0 and 23 specimens of different species per sample). Therefore, no water samples were taken for reference during plankton sampling. Because of the minimal and unsuccessful recovery the sampling was stopped after 6 days.

No.	Pump interval	Latitude	Longitude	Temp.	Salinity	Latitude	Lonitude	Temp.	Salinity
	Date / Interval [h]	(start)	(start)	[°C]	[‰]	(end)	(end)	[°C]	[%0]
FP 1	21-21.04.98 / 4,50	30°47,3′S	39°34,6′W	21.0	35.73	31°12,1′S	39°23,8′W	21.4	35.68
FP 2	22-22.04.98 / 9,25	30°44,8′S	38°41,5′W	23.2	36.17	29°42,3′S	37°22,9′W	22.2	36.11
FP 3	23-24.04.98 / 23,0	27°39,5′S	34°50,6′W	23.6	35.87	26°18,0′S	34°56,1′W	24.3	35.97
FP 4	24-25.04.98 / 28,0	26°18,0′S	34°56,1′W	24.3	35.97	25°35,4′S	33°19,6′W	25.0	36.37
FP 5	25-26.04.98 / 23,0	25°35,4′S	33°19,6′W	25.0	36.37	24°58,6′S	28°41,5′W	26.1	36.66
FP 6	26-27.04.98 / 23,5	24°58,6′S	28°41,5′W	26.1	36.66	24°22,2′S	24°00,8′W	26.5	36.98

Table 13 Locations of sampling profiles and pump intervals for planktic foraminifera

4.5 Marine Geology, Sediment Cores

(R. Höppner, B. Jahn, B. Kottke, H. Kuhlmann, T. Lützeler, C. Moos, H.-S. Niebler, S. Rath, F. Schewe, T. Westerhold)

During cruise M 41/3 we used giant box corer (2x), multicorer I (4x), multicorer II (17x) and gravity corer (22x) in order to recover surface sediments and sediment cores from the late Quaternary from the northwestern Vema Channel and from the Mid-Atlantic Ridge on two profiles at 24°S and 19°S. Samples were retrieved from water depths between 2500 and 4200° m The coring locations, water depths, devices used for our sampling program at all stations and the core lengths recovered are given in the station list (Chapter 8, Table 18).

4.5.1 Multicorer and Giant Box Corer Sampling

The multicorer is designed to recover undisturbed surface sediment sections and the overlying bottom water. During M 41/3 two models were used. At four stations a large multicorer (see summary station list Chapter 8) with 4 small and 8 large tubes was used, but no cores were recovered. At 17 stations a second multicorer ("MUC II") was used with 4 small and 6 larger plastic tubes (6 and 10 cm in diameter, respectively). At 16 stations 8-10 tubes were filled with the uppermost 11 to 30 cm of sediment and the overlying bottom water. At one station (GeoB 5123-1) the multicorer failed and no samples were recovered. Furthermore, the sandy sediments rich in foraminifera tend to be washed out of the plastic tubes. Depending on the recovery, the tubes were sampled as follows:

- 1 large tube, cut into 1 cm thick slices and frozen for organic carbon (TOC) geochemistry
- 1 large tube, cut into 1 cm thick slices for surveys on dinoflagellates
- 2 large tubes, cut into 1 cm thick slices for investigation of benthic foraminiferal assemblages, stained with rose bengal
- 1 large tube, cut into 1 cm thick slices and frozen for sedimentology
- 1 small tube, cut into 1 cm thick slices for paleomagnetic studies
- 1 small tube, cut into 1 cm thick slices for organic geochemistry, organic matter microscopy and petrology
- 1 large tube, only surface (first cm) for diatom and radiolarian investigations stained with ethanol/methanol
- 1 large tube (without surface) and 2 small tubes were frozen as archive cores
- 50 ml bottom water samples for stable carbon and oxygen isotopes were taken at each station where sediment was recovered

The giant box corer was used at 2 stations (GeoB 5110-5 and 5112-5, see Chapter 8) in order to sample sediments that were expected to be rich in foraminifera. With a surface area of 50x50 cm, the box corer retrieved the uppermost 30 to 46 cm of the sediment column. Once on board, the overlying water was removed, the sediment temperature measured and a surface photograph was taken. Then the sediment surface was sampled according to the following scheme:

- 400 cm² for foraminiferal analysis stained with rose bengal
- 200 cm² for radiolaria and diatom analysis preserved with ethanol
- 200 cm² for organic geochemical analysis frozen at -20°C
- 25 cm² for diatom analysis preserved with methanol

Afterwards the front lid of the box corer was opened, the sediment cleaned, photographed and described. Two series of 10 ml syringes were taken at 3 cm depth intervals, one for foraminiferal and one for organic geochemical analysis. Furthermore, two archive cores (12 cm diameter) were taken and all sediments were subsampled with one large and three small multicorer tubes, then cut into 1 cm thick slices for paleomagnetic, dinoflagellate and granulometric studies as well as for organic matter microscopy according to the multicorer sampling scheme described above.

4.5.2 Gravity Corer Sampling

Using a gravity corer, 22 sediment cores between 30 and 961 cm in length were taken at 19 stations. During M 41/3 a total of 83,5 m of sediments were recovered. Before using the coring tools, the liners were marked with a straight line lengthwise, in order to ensure that later sampling of the core segments be carried out in the same orientation, particularly for paleomagnetic purposes. After the core was retrieved on deck, the liners were cut into 1 m segments, closed with caps at both ends and inscribed (Fig. 22). After the temperature equilibration of the cores was reached, the physical properties were measured (see Chapter 4.6).

Inscription:

Fig. 22 Scheme of the inscription of gravity core segments

20 of the 22 cores were cut along-core in two halves: one half was kept as 'Archive' material, the other as 'Work' material. The sediments were described, smear-slide samples were prepared from distinctive layers, and spectrophotometric measurements were carried out and a photograph was taken of the 'Archive' half, which was stored in a low temperature room at 4°C.

The surface of every core segment was scraped with a knife to expose a fresh, unsmeared surface for measurements at 5 cm intervals, coinciding with the sampling depths for geochemical and faunal studies. The wet surface of the sediments was covered with a thin, transparent plastic film (Hostaphan) in order to protect the photometer from being soiled. Before measurements, the spectrophotometer was calibrated for white colour reflectance by attaching a white calibration cap. The spectrophotometer readings were transferred to a personal computer and a graphic representation for selected wave band reflection (450, 550, and 700 nm) of each core is given in the following section (Figs. 35 to 56). Finally, electrical conductivity and magnetic susceptibility measurements were carried out in 2 cm intervals (see Chapter 4.6).

From the 'Work' half-core two parallel series of syringe samples (10 cm³) and cube samples (6 cm³) were taken as a routine measure at depth intervals of 5 and 10 cm, respectively. These syringe samples will be used for the measurements and determinations of physical properties, stable isotopes, foraminiferal assemblages, organic geochemistry and paleomagnetic investigations. Additionally, at cores GeoB 5110-4, 5112-4, 5115-1, 5116-2, 5117-1, 5120-2, 5121-1, 5130-2, 5132-3, 5133-1 and 5136-1 syringe samples for an initial shipboard biostratigraphic analysis (10 cm³) were taken at depth intervals of 5 cm in the first 50 cm of the core, and at depth intervals of 20 cm in the rest of the core (see Chapter 4.5.3). Furthermore, at cores GeoB 5115-1 and 5116-2, syringe samples (5 g) were taken at depth intervals of 10 cm for on-board measurements of the carbonate content (see Chapter 4.5.5). The sampling holes were plugged with pieces of polystyrol and both halves of the cores were stored in core tubes (D-tubes).

4.5.3 Stratigraphy

(T. Lützeler, H.-S. Niebler)

4.5.3.1 Methods of Biostratigraphic Analysis

An initial shipboard biostratigraphic analysis was made for 11 gravity cores by taking sediment samples at a 5 cm interval in the upper 50 cm of each core and every 20 cm from 50 cm core depth to the core bottom. Depending on sediment facies, 2-8 ml of sediment were washed over a 63 μ m mesh sieve, dried in an oven at 70°C and placed into 5 ml glass tubes. The height of the sediment column in the glass tube was used as an indicator for the relative sand content of the sample. The sand content varies depending on the foraminifer fertility in the surface water, but can also be used as an indicator of carbonate dissolution.

The stratigraphic classification was made by determining the abundance of the planktic foraminifer group of *Globorotalia menardii* in the fraction > 150 μ m. The *G. menardii* group consists of closely related subspecies (e.g. *G. menardii menardii, G. menardii gibberula, G. tumida, G. tumida flexuosa*), which occur in the present-day Atlantic Ocean between about 25°N and 30°S. With an OTTO splitter the sample was quantitatively subsampled until about 400 foraminifer specimens were left for binocular investigation. In this split, all foraminifers of the *G. menardii* group were counted and then the total number of *G. menardii* per sample was calculated using the splitting rate.

On the basis of the cyclic appearence and disappearence of the *G. menardi* species group, Ericson and Wollin (1968) defined a biostratigraphic zonation scheme using a letter notation from Z (Holocene) to Q (1.75-2 million years ago), whereby species of the *G. menardi* group are abundant in zone Z, missing in zone Y, abundant in zone X and so on. Up to a certain age the zonal boundaries correlate approximately with stage boundaries of the more precise oxygen isotope stratigraphy. The ages for biostratigraphic boundaries used here are fixed as follows (approximate oxygen isotope stage boundaries in brackets):

Z/Y	12 ka before present	(~1/2)
Y/X	80 ka before present	(~4/5)
X/W	130 ka before present	(~5/6)
W/V	185 ka before present	(~6/7)
V/U	370 ka before present	(~10/11)
U/T	550 ka before present	(~14/15)

4.5.3.2 Shipboard Results

Planktic foraminifera are abundant in all investigated cores. The cores contain more or less undisturbed Pleistocene sequences. The preliminary biostratigraphic results are summarized in Table 14, listing the estimated sub-bottom depth positions of *G. menardii* zone boundaries. The results are mostly confirmed by an initial stratigraphy using susceptibility data (see Chapter 4.6). The individual biostratigraphies are shown in Figs. 23 to 33 together with the species number of the *G. menardii* group and the down-core variations in sand content.

Table 14 Biostratigraphic summary of sediment cores from cruise M 41/3. Estimated subbottom positions (in cm) of identified G. menardii zone boundaries

Biostratig. Boundaries	Z/Y	Y/X	X/W	W/V	V/U	U/T
Core	12 ka	80 ka	130ka	185 ka	370 ka	550 ka
GeoB 5110-4	20	295	590			
GeoB 5112-4	-35	-5	50	75	245	395
GeoB 5115-1	5	45	95	120		
GeoB 5116-2	5	25	115	140	320	
GeoB 5117-1	5	80			·	
GeoB 5120-2	10	45	145	170	340	
GeoB 5121-1	5	50	75	95	340	
GeoB 5130-2	25	225	510			
GeoB 5132-3	10	125	?315			
GeoB 5133-1	10	70	120	140	460	
GeoB 5136-1	15	150	195	?225	?	

Northwestern Vema Channel

GeoB 5110-4 (position 25°54.3'S 35°38.4'W, water depth: 4188 m, length: 961 cm) Fig. 23 The stratigraphic classification in this core is uncertain due to carbonate dissolution (water depth of 4188 m). The carbonate preservation is generally weak, only in a few samples moderate, which is expressed by a very low sand content. The base of the core reaches into zone W. The mean sedimentation rate of core GeoB 5110-4 is 5 cm/ka and varies between 1.5 cm/ka during the Holocene and 6 cm/ka during zone X.

Mid-Atlantic Ridge, Profile 24°S, Brazil Basin

GeoB 5112-4 (position 23°49.5'S 16°15.5'W, water depth: 3842 m, length: 559 cm) Fig. 24 The upper 38 cm of this core were recovered from the bomb of the gravity corer, the surface is missing or mixed. Therefore it seems that the Holocene was not fully recovered. The base of the core reaches into zone T and this core reveals the oldest sediments of all recovered cores during this cruise. A further stratigraphic determination is based on a correlation of a diatom ooze layer (e.g. core GeoB 3813-3, see Wefer et al. 1996), which has an age of about 520 ka. The sedimentation rate of core GeoB 5112-4 is generally low in the order of 0.8 cm/ka. The carbonate preservation is generally good, only in a few samples in the zones V and U moderate. The sand contents are higher during zones Z to W, due to a better preservation of larger foraminifera.

GeoB 5115-1 (position 24°08.6'S 14°02.6'W, water depth: 3291 m, length: 406 cm) Fig. 25 The base of the core reaches into zone V. In contrast to the average sedimentation rate of 1.5 cm/ka, the sedimentation rate of the Holocene (zone Z) and isotope stage 6 (zone W) is very low (0.5 cm/ka). In zones Y and X the sedimentation rates are somewhat higher (0.7 cm/ka and 1 cm/ka, respectively). The carbonate preservation is very good, the sand content shows a maximum at the boundary of zones X and V, but becomes low during zone V.

GeoB 5116-1 (position 24°09.5'S 13°46.2'W, water depth: 2550 m, length: 540 cm) Fig. 26 The core reaches into zone U and has an average sedimentation rate of 0.9 cm/ka. As in core GeoB 5115-1 the sedimentation rate of the Holocene (zone Z) is very low, which could also result from a partial loss of the surface sediment. The carbonate preservation is very good. The sand content becomes lower during zones X and U. GeoB 5117-1 (position 24°08.9'S 13°58.4'W, water depth: 3040 m, length: 139 cm) Fig. 27 Because of its short length this core only penetrates zone X. Thus, the core base is younger than 130 ka. The sedimentation rate is on average 1 cm/ka, whereby the sedimentation rate of the Holocene (zone Z) is again lower. The carbonate preservation is very good. The sand content shows a maximum in zone Y (isotope stages 2-4), but becomes low during warm periods (zone Z and X).

Mid-Atlantic Ridge, Profile 24°S, Angola Basin

GeoB 5120-2 (position 24°10.2'S 12°21.8'W, water depth: 3844 m, length: 376 cm) Fig. 28 This core has an average sedimentation rate of 0.9 cm/ka. Sedimentation rates are relatively low in zones Y and Z (0.5 cm/ka), and slightly higher in zones Z, X and V (1 cm/ka, 2 cm/ka and 0.9 cm/ka, respectively). The core ends in zone U. The carbonate preservation is good throughout the core, the sand content becomes higher in zone W.

GeoB 5121-1 (position 24°11.0'S 12°01.3'W, water depth: 3488 m, length: 531 cm) Fig. 29 In this core the identification of zones Z to X is uncertain, but is confirmed by susceptibility data. The sedimentation rates in zones Z to W are low (between 0.4 and 0.7 cm/ka). The sedimentation rate in zone V is higher with 1.3 cm/ka. Core GeoB 5121-1 has an average sedimentation rate of 0.9 cm/ka and is therefore comparable with GeoB 5120-2. Also the carbonate preservation is good. The sand content becomes higher in zone Y, at the boundary of zone W/V and in zone U.

Mid-Atlantic Ridge, Profile 19°S, Angola Basin

GeoB 5130-2 (position 19°24.2'S 09°27.6'W, water depth: 3165 m, length: 517 cm) Fig. 30 The base of the core reaches into zone W and therefore this is one of the recovered cores with a higher sedimentation rate. The average sedimentation rate is 4 cm/ka. The sedimentation rate of the Holocene (zone Z) is with 2 cm/ka relatively low, but increases in zones Y (3 cm/ka) and X (6 cm/ka). The carbonate preservation is generally good, but becomes weak at a core depth between 108 and 208 cm (zone Y). The sand content shows a maximum in the Holocene and in the first centimeters of zone Y as well as in zone X.

GeoB 5132-3 (position 19°07.5'S 09°43.1'W, water depth: 3941 m, length: 326 cm) Fig. 31 Core GeoB 5132-3 has an average sedimentation rate of 2.5 cm/ka. The sedimentation rates are relatively low in zones Y and Z (1 cm/ka and 1.7 cm/ka, respectively) and higher in zone X (4 cm/ka). The core probably ends at zone boundary X/W. The carbonate preservation is good throughout the core. As in core GeoB 5130-2, the sand content shows a maximum in the Holocene and in the first centimeters of zone Y and in zone X.

GeoB 5133-1 (position 19°05.1'S 10°11.6'W, water depth: 3661 m, length: 503 cm) Fig. 32 The stratigraphic classification of this core differs very much from the other two cores from the 19°S Profile in the Angola Basin. Core GeoB 5133-1 reaches into zone U and has an average sedimentation rate of 1.2 cm/ka. The sedimentation rates between the Holocene and isotope stage 5 (zone Z to zone X) are equal with 1 cm/ka. In zone W the sedimentation rate is very low with only 0.4 cm/ka, but becomes higher in zone V (1.7 cm/ka). The carbonate preservation is very good. The sand content is higher in the zones Z to W and becomes lower during zone V.

Mid-Atlantic Ridge, Profile 19°S, Brazil Basin

GeoB 5136-1 (position $19^{\circ}22.2$ ' S $12^{\circ}40.2$ ' W, water depth: 3227 m, length: 529 cm) Fig. 33 This core has an average sedimentation rate of 1.2 cm/ka. Sedimentation rates are relatively high in zones Y and Z (1 cm/ka and 2 cm/ka, respectively), and relatively low in zones X and W (0.9 cm/ka and 0.5 cm/ka, respectively). Core GeoB 5136-1 ends in zone V. The carbonate preservation is very good, but the sand content becomes very low in the lower part of zone Y, which means that foraminifer fragmentation increases.

GeoB 5110-4

Figure 23 Biostratigraphic analysis and sand content of GeoB 5110-4

Figure 24 Biostratigraphic analysis and sand content of GeoB 5112-4

GeoB 5115-1

Figure 25 Biostratigraphic analysis and sand content of GeoB 5115-1

Figure 26 Biostratigraphic analysis and sand content of GeoB 5116-1

Figure 27 Biostratigraphic analysis and sand content of GeoB 5117-1

GeoB 5116-2

Figure 28 Biostratigraphic analysis and sand content of GeoB 5120-2

Figure 29 Biostratigraphic analysis and sand content of GeoB 5121-1

GeoB 5130-2

Figure 30 Biostratigraphic analysis and sand content of GeoB 5130-2

GeoB 5132-3

Figure 31 Biostratigraphic analysis and sand content of GeoB 5132-3

Figure 32 Biostratigraphic analysis and sand content of GeoB 5133-1

GeoB 5136-1

Figure 33 Biostratigraphic analysis and sand content of GeoB 5136-1

4.5.4 Lithologic Core Summary

(C. Moos, H.-S. Niebler, T. Westerhold)

This preliminary lithological summary of the sediments retrieved with the gravity corer is based on visual core description and colour scanner readings as well as microscopic observations of the smear slides taken from distinctive sediment horizons. Core descriptions are shown in Figures 35 to 54 (legend for stratigraphic columns is shown in Fig. 34), representing main lithologies, their colour according to the Munsell Soil Color Charts, and sedimentary structures. For correlation, colour scanner readings of distinctive wave length bands (450, 550, 700 nm) are also shown. It is likely, that the colour changes result from variations in the sediment composition - particularly the ratio of carbonate (light and high reflection values) to organic residue and clay mineral (dark or low reflection values) content. The lithological descriptions are primarily based on smear slide analysis. Smear slides were taken from all representative lithological units in all cores and from layers of special interest. The slides were then mounted with "Norland optical adhesive". They were examined on board ship using a transmitted light microscope at 100 to 400x magnification under plane-polarised and crosspolarised light. The sediment classification is based on ODP nomenclature following the terminology defined by Dean et al. (1985). A total of 232 smear slides were prepared and analysed (Table 15). The main purpose of the core description was to characterise all representative lithologies and special or unique layers of particular interest.

To quantify the colour of the sediment a Minolta $CM-2002^{TM}$ hand-held spectrophotometer was used to measure the light reflectance of all gravity cores at 31 wavelength channels in the range of visible light (400 - 700 nm). The readings were taken immediately after splitting the core. The archive halves of the cores were scraped with a knife to expose a fresh, unsmeared surface for the measurements. The core was then covered with a transparent Hostaphan®-film to protect the camera. Measurements were taken every 5 cm, at the same positions as the samples taken from the work half, to resolve small scale colour changes. Before measurements were taken, a white calibration of the spectrophotometer was included in the data file. The calibration surface was covered with the same plastic film as the core to avoid any bias in the readings.

The reflectance profiles at the three wavelengths (400 nm, 550 nm, 700 nm) are shown next to the core diagrams. These three wavelengths give a good overview of sediment colour spectrum, since they cover most of the spectrum measured. In addition they represent the colours blue, green and red, respectively.

The colour of the sediment is strongly influenced by its carbonate content and terrigenous material. In cores with a carbonate content below approx. 50 wt.% the lightness (L^*) of the sediment correlates well with the carbonate content. This correlation can be used as a basis for a preliminary stratigraphy by correlating the lightness of the sediment colour to the carbonate data of other cores from the region. The hue (H) of the sediment colour seems to be strongly influenced by the input of terrigenous material. Low values in lightness and hue are indicators for turbidite and sandy layers. This might be also an effect of porosity. Also air bubbles between the plastic film and the sediment shows same effect.

During M 41/3 sediment cores were mainly recovered from the Mid-Atlantic Ridge except for core GeoB 5110-4, which was retrieved in the northwestern exit of the Vema Channel. The cores from the Mid-Atlantic Ridge, which were recovered on two profiles at about 24°S and 19°S, were underlying the oligotrophic waters of the central Subtropical Gyre. Carbonate, mainly composed of coccolithophorid and foraminiferal shells, is the most abundant biogenic material in these very low productivity waters and constitutes the major sedimentary component. Despite the large distance to the African continent, aeolian transported FeOH-rich terrigenous minerals originating from the Sahara average several wt. % of the sediment. The partly intensive brownish to grey-reddish colours are to some extent caused by the supply of Saharan dust but are probably also a result of deep oxygen penetration depths into the sediment, which are typical for the oligotrophic waters of the pelagic environment. The sediment cores from both profiles are frequently disrupted by turbidite sequences. This may be attributed to the core locations which are mostly situated within small morphological depressions. Most of the cores show similar colour reflectance characteristics which are particularly obvious at the 700 nm wavelength band (red). Colour reflectance and lightness are good indicators to identify turbidites and sandy layers in most of our cores. In most cores lithological units are combined with colour changes and changes in light reflectance.

Northwestern Vema Channel

GeoB 5110-4 (position 25°54.3'S 35°38.4'W, water depth: 4188 m, length: 961 cm) Fig. 35 This core was recovered from a depth within the lysocline and therefore selective carbonate dissolution was expected. The selective carbonate dissolution has been observed in high foraminifer fractionation during the initial stratigraphic investigation (see Chapter 4.5.3.2). The upper part of the core is composed of clay bearing nannofossil ooze with foraminifers, whereby the lower part (404-532 cm and below 576 cm) contains clay and only few nannofossils and foraminifera. Minor components are dinoflagellates in depths between 0 to 176 cm. Pyrite occurs between 213 cm and the bottom of the core. The whole core contains sections with mm-thick laminated layers. At 532 cm an erosion surface occurs. Slight bioturbation appears almost in the whole core, but increases at the core top, between 576-680 cm and at 917 cm. Between 632-576 cm worm burrows occur. Brownish colours dominate, but also shades of yellow, gray and olive are abundant.

Mid-Atlantic Ridge, Profile 24°S, Brazil Basin

GeoB 5112-4 (position 23°49.5'S 16°15.5'W, water depth: 3842 m, length: 559 cm) Fig. 36 The sediment of this core as well as the 38 cm of sediment recovered from the bomb of the gravity corer are dominated by nannofossil ooze which is foram- and/or dinoflagellate-bearing. The whole core consists of silty to sandy sediments. Colour changes are frequent, varying from yellowish brown and light olive brown to pale yellow. Generally, the core is moderately bioturbated with different sections of worm burrows. Several mm-thick laminated diatom layers occur in the depths between 347-359 cm. These layers are known from other cores further south (e.g. GeoB 3813-3, Wefer et al. 1996) and give the possibility to correlate between cores (see Chapter 4.6).

GeoB 5115-1 (position 24°08.6'S 14°02.6'W, water depth: 3291 m, length: 406 cm) Fig. 38 The core mainly consists of yellow and brown foram-bearing nannofossil ooze. The upper 155 cm of the core are composed of silty dinoflagellate-bearing nannofossil ooze. Below 155 cm the sediment consists of foram-nannofossil ooze with some clayey sections. The core is moderately bioturbated with different sections of worm burrows. In depths between 175-181 cm and 235-270 cm turbidites are found. The turbidites are fine grained and soft, silt content increases towards the base showing graded foram sands. GeoB 5116-2 (position 24°09.5'S 13°46.2'W, water depth: 2550 m, length: 540 cm) Fig. 39 The dominant lithology is foram bearing nannofossil ooze with dinoflagellates and/or accessory minerals as additional minor components. The upper 510 cm of the moderately bioturbated core contains silt to sand grain sizes. Below 510 cm the sediment becomes clayey to silty. The colours range from very pale brown to light brown and brownish yellow. The boundaries between the colours are diffuse.

GeoB 5117-1 (position 24°08.9'S 13°58.4'W, water depth: 3040 m, length: 139 cm) Fig. 40 During sediment recovery the tube was bent and only 139 cm of sediment were recovered. Foram bearing nannofossil ooze dominates the whole core. The moderately bioturbated light yellowish brown sediment is mainly silty with some more sandy sections. Between 114-139 cm the sediment becomes lighter in colour (pale yellow), is strongly compacted and the grain size changes to clayey silt.

Mid-Atlantic Ridge, Profile 24°S, Angola Basin

GeoB 5120-2 (position 24°10.2'S 12°21.8'W, water depth: 3844 m, length: 376 cm) Fig. 41 The upper 65 cm of the core are dominated by moderately bioturbated foram and dinoflagellate bearing nannofossil oozes which are clayey to silty. Between 65-173 cm the lithology changes slightly to silty and sandy grain sizes. In the depths between 65-83 cm and 131-134 cm the core is interrupted by thin turbidites. The turbidites are fine grained, soft sediment, increasingly silty towards their bases and show graded foram sands. Below the second turbidite, three sections with mm-thick laminated layers were found. These layers are interbedded into by clayey-silty nannofossil ooze, which is more or less foram-bearing. This sediment is moderately bioturbated and often contains burrows of worms. Colour changes are frequent, varying from reddish brown to pink and light yellowish brown.

GeoB 5121-1 (position 24°11.0'S 12°01.3'W, water depth: 3488 m, length: 531 cm) Fig. 42 The sediment of this core is dominated by nannofossil ooze which is foram-bearing. The whole core consists of silty to sandy sediments and is moderately bioturbated. Pyrite and glaukonite also occur between in a depth of 463 cm. Different sections of worm burrows can be found throughout the core. In depths between 494-502 cm a turbidite is found, which is fine grained, soft sediment, increasingly silty towards its base and shows graded foram sands. Colour changes are frequent, varying from light yellowish brown to pale yellow, very pale brown and white.

Legend for stratigraphic columns

Lithology

one major component

siliceous

terrigenous

Structures

mixtures

calcareous

nannofossil-bearing

-_____ -__+_ foram-bearing -__+ nannofossil ooze

siliceous

diatomaceous nannof. ooze or diatom-bearing nannof. ooze

terrigenous

clay-bearing nanno ooze foram-bearing clayey nannofossil ooze

clayey nannofossil ooze or

nannofossil clay

Fossils

- igarsigma shell fragments
- () megafossil

Colour

----- 700 nm (red) ----- 550 nm (green) ----- 450 nm (blue)

Fig. 34 Legend for stratigraphic columns in Figs. 35 - 56

admixtures

calcareous

--- nannofossil-bearing

siliceous

- -⇔ siliceous
- ✓ diatom -bearing

terrigenous

- clay-bearing
- -o- mud-bearing
- sand-bearing

Figure 35a Core description of GeoB 5110-4

Fig. 36a Core description of GeoB 5112-4

CORE IS NOT OPENED NO CORE DESCRIPTION AVAILABLE

Fig. 37a Core description of GeoB 5112-5

Fig. 36b Physical properties data of GeoB 5112-4

Fig. 37b Physical properties data of GeoB 5112-5

Fig. 38a Core description of GeoB 5115-1

Fig. 38b Physical properties data of GeoB 5115-1

Fig. 39a Core description of GeoB 5116-2

Fig. 39b Physical properties data of GeoB 5116-2

Fig. 40a Core description of GeoB 5117-1

Fig. 41a Core description of GeoB 5120-2

Fig. 40b Physical properties data of GeoB 5117-1

Fig. 41b Physical properties data of GeoB 5120-2

Fig. 42a Core description of GeoB 5121-1

Fig. 42b Physical properties data of GeoB 5121-1

Fig. 43a Core description of GeoB 5130-2

Fig. 43b Physical properties data of GeoB 5130-2

Fig. 44a Core description of GeoB 5131-1

Fig. 44b Physical properties data of GeoB 5131-1

Fig. 45b Physical properties data of GeoB 5132-1

Fig. 46b Physical properties data of GeoB 5132-3

Fig. 47a Core description of GeoB 5133-1

Fig. 47b Physical properties data of GeoB 5133-1

Fig. 49a Core description of GeoB 5135-2

RV Meteor Cruise 41, Leg 3, Vitória-Salvador

Fig. 48b Physical properties data of GeoB 5134-2

Fig. 49b Physical properties data of GeoB 5135-2

400 nm

Fig. 50a Core description of GeoB 5136-1

Fig. 50b Physical properties data of GeoB 5136-1

Fig. 52a Core description of GeoB 5138-1

Fig. 51b Physical properties data of GeoB 5137-2

Fig. 52b Physical properties data of GeoB 5138-1

Fig. 53a Core description of GeoB 5139-2

400 nm

Fig. 53b Physical properties data of GeoB 5139-2

Fig. 54a Core description of GeoB 5140-1

CORE NOT OPENED

NO CORE DESCRIPTION AVAILABLE

Fig. 55a Core description of GeoB 5140-2

Fig. 54b Physical properties data of GeoB 5140-1

Fig. 55b Physical properties data of GeoB 5140-2

Fig. 56a Core description of GeoB 5142-1

400 nm

Fig. 56b Physical properties data of GeoB 5142-1

Mid-Atlantic Ridge, Profil 19°S, Angola Basin

GeoB 5130-2 (position 19°24.2'S 09°27.6'W, water depth: 3165 m, length: 517 cm) Fig. 43 The core is dominated by nannofossil ooze which is foram- and/or dinoflagellate-bearing. In a depth of 29-31 cm a fine grained foram-sand layer occurs. Between 31 and 41 cm the core is interrupted by a thin turbidite. The turbidite consists of very fine grained, soft sediment increasingly silty towards its base. On the base, a foram-sand layer was found again. A clayeysilty watersaturated layer is situated between 59 and 203 cm. Moderate to strong bioturbation is observed throughout the core, except in depths between 217-248 cm. In these depths, mm thick laminated layers of fine foram-sand were observed. In addition to these laminated layers, the core often contains worm burrows. Colour changes are minor, varying from light gray and pale yellow to very pale brown.

GeoB 5131-1 (position 19°02.2'S 09°44.5'W, water depth: 3886 m, length: 216 cm) Fig. 44 The core consists of foram-bearing nannofossil ooze from 0-216 cm. Bioturbation only takes place at 57 cm, 135-150 cm and from 190-205 cm. Colour changes were only noticed at 200 cm from pale brown to very pale brown.

GeoB 5132-1 (position 19°07.5'S 09°43.1'W, water depth: 3942 m, length: 325 cm) Fig. 45 The core surface as well as sandy layers from 44-68 cm and from 95-103 cm leaked during recovery of the core on board, so the indication of core depths are reconstructed and could include large errors. The rest of the core is dominated by foram-bearing nannofossil ooze. Less bioturbation only takes place from 30-35 cm, 145-150 cm, 185-220 cm, 240-250 cm and 310-317 cm.

GeoB 5132-3 (position 19°07.5'S 09°43.1'W, water depth: 3941 m, length: 326 cm) Fig. 46 This core was taken at the same location as GeoB 5132-1. The upper 35 cm are dominated by moderate bioturbated foram and dinoflagellate bearing nannofossil ooze which is silty to sandy. In depths between 35-59 and 66-92 cm, the core is interrupted by two turbidites. The turbidites are fine grained, soft clayey sediment increasingly silty towards their bases, which show graded fine foram sands. Between and below the two turbidites, a moderate bioturbated nannofossil ooze with worm burrows is observed. Between 301-315 cm the lithology changes slightly to clayey grain sizes, but from 315 cm down to the core bottom again silty-sandy grain sizes occur. A very pale brown colour dominates throughout the core. GeoB 5133-1 (position 19°05.1'S 10°11.6'W, water depth: 3661 m, length: 503 cm) Fig. 46 The core mainly consists of very pale brown foram and dinoflagellate-bearing nannofossil ooze. The sediment between 28-38 cm is composed of silty-sandy foram-nannofossil ooze, whereby here worm burrows occur. Below 38 cm until 489 cm, the core contains an equal sequence of silty-sandy foram- and dinoflagellate-bearing nannofossil ooze. At 489 cm, the nannofossil ooze becomes more clayey. The whole core is moderately bioturbated with high worm burrow density reaching a maximum between 105-323 cm.

GeoB 5134-2 (position 19°02.7' S 10°41.0' W, water depth: 3412 m, length: 242 cm) Fig. 47 The Sediment of core 5134-2 is described in the smear slide analysis as foram-bearing nannofossil ooze. The core is undisturbed and only in the second meter less or moderately bioturbated. Light reflectance shows only small variations.

GeoB 5135-2 (position 19°26.1' S 11°03.8' W, water depth: 3303 m, length: 150 cm) Fig. 48 The core shows a layer of clayey foram-bearing nannofossil ooze from 0-38 cm and 50-150 cm and nanno-bearing foram ooze (38-50 cm). These units are also represented in colour changes. Between 38 and 50 cm the core is disturbed. Lightness and hue are good indicators for disturbed parts.

Mid-Atlantic Ridge, Profil 19°S, Brazil Basin

GeoB 5136-1 (position 19°22.2' S 12°40.2' W, water depth: 3227 m, length: 529 cm) Fig. 49 This core consists of nannofossil ooze, in some layers foram- and/or dinoflagellate-bearing. Between 151 and 158 cm a thin turbidite layer is included. From 158-180 cm, the sediment is a silty carbonate mud. Worms burrows only take place in a few parts of the core. The core is only less bioturbated below the turbitide layer and only the upper part between 85 and 92 cm is strongly bioturbated.

GeoB 5137-2 (position 19°17.5' S 13°27.2' W, water depth: 3503 m, length: 248 cm) Fig. 50 The core shows cyclic changing lithological units of clay and carbonate rich sediments, described in the smear slide as dino- and foram-bearing nannofossil ooze. Between 130 and 137 cm the sediment shows laminated bedding. Most parts are moderately or strongly bioturbated. GeoB 5138-1 (position 19°11.3' S 14°39.3' W, water depth: 3632 m, length: 181 cm) Fig. 52 The core 5138-1 is dominated by foram nannofossil ooze and in some depths only less bioturbated. Also light reflectance only changes within a very small range.

GeoB 5139-2 (position 19°00.8'S 15°50.0'W, water depth: 3903 m, length: 563 cm) Fig. 53 The first 60 cm sediment of core GeoB 5139-2 were recovered as a disturbed mass sample from the bomb. The first 241 cm of the core show a disturbed sequence of equal, extremely fine and soft sediment of clay texture, described in the smear slide as nannofossil ooze. The sediment between 241-265 cm is composed of silty-sandy moderately bioturbated nannofossibearing foram ooze. Between 265-308 cm, mm thick laminated layers of light fine foram-sand were observed. Below 308 cm until 450 cm, the core contains a silty-sandy foram-bearing nannofossil ooze, which is moderately bioturbated. At 450 cm, the nannofossil ooze becomes more clayey and different sections of worm burrows are observed. A very pale brown colour dominates throughout this core.

GeoB 5140-1 (position 19°03.2'S 16°36.8'W, water depth: 3660 m, length: 391 cm) Fig. 54 The core is dominated by foram-bearing nannofossil ooze. Some sandy layers between one and two m are disturbed or lost. Most layers are rich in clay and moderately or strongly bioturbated with several worm burrows. From 110-140 cm, the core is interrupted by a turbidite layer.

GeoB 5142-1 (position 19°05.4'S 17°08.7'W, water depth: 3946 m, length: 564 cm) Fig. 56 The core-surface is missing because the first 30 cm sediment of this core were recovered from the bomb. The core description starts on this sub-surface level. Core GeoB 5142-1 is dominated by nannofossil ooze which is foram- and/or dinoflagellate-bearing. This sediment is clayey-silty and in the upper 207 cm moderately bioturbated. Between 208 and 360 cm, a strong bioturbation with worm burrows is often observed. From 360 to 429 cm the sediment is moderately bioturbated. In depths between 429-433 cm and 433-438 cm the core is interrupted by very thin turbidites. The turbidites are fine grained, soft sediment, in a very few cm increasingly silty towards their bases, and show small bands of graded foram-sands. Below the second turbidite, foram-bearing nannofossil ooze of 'normal' pelagic sedimentation is found. Again this nannofossil ooze is moderately bioturbated and often contains worm burrows. The whole sediment is dominated by brownish colours with lighter and darker shades.

Station	depth [cm]	Qz	С	F	NF	D	Туре	Station	depth [cm]	Qz	C	F	NF	D	Туре
5110.4	1		15		75	1	CHNEO	5116.2			1	20	62		ENEO
5110-4	30	2	12		82	1	CENFO	5116-2	20		1	20	60		FINEO
5110-4	79		15		74	1	CENEO	5116.2	180			20	72		FUNEO
5110 4	112		15	1	91 91	1	CENTO	5116.2	167			20	74		ELNEO
5110 4	176	5	20	1	01 2		CUNTO	5116-2	202		2	20	61		ELNEO
5110-4	213	2	88		2		C	5116-2	220		2	10	75		ENEO
5110 4	213	2	20		77		CHNEO	5116-2	320			10	60		ENEO
5110 4	202	2	12		01		ChNEO	5116-2	369			15	00		ELNEO
5110.4	370	5	2		04		NEO	5116-2	433			15	00 01		ELNEO
5110-4	303	1	15		80		CENEO	5116-2	520			10	01 95		FUNFO
5110-4	416		90		00		C	5117-1) 20			15	72		FENEO
5110-4	468		97				C	5117-1	42			12	82		FUNEO
5110-4	510		94				C	5117-1	76			17	74		FhNFO
5110-4	534		3		91		NFO	5117-1	113			20	68		FbNFO
5110-4	571		1		96		NFO	5117-1	131			10	82		FbNFO
5110-4	596	1	- 94				C	5120-2	8			12	78		FbNFO
5110-4	656		97				c	5120-2	60			10	81		FbNFO
5110-4	715		99				c	5120-2	90			9	83		NFO
5110-4	764	3	95				с	5120-2	116			5	90		NFO
5110-4	803	2	96				С	5120-2	135			5	92		NFO
5110-4	870	5	92				С	5120-2	162			9	88		NFO
5110-4	893	6	93				С	5120-2	195			15	75		FbNFO
5110-4	950	4	95				с	5120-2	220			9	82		NFO
5112-4	-28		3	15	63		NbFO	5120-2	229			15	78		FbNFO
5112-4	-3		2	15	70		NbFO	5120-2	253			9	84		NFO
5112-4	12		2	13	67		NbFO	5120-2	284			17	74		FbNFO
5112-4	48		3	10	71		NbFO	5120-2	309			15	77		FbNFO
5112-4	77		1	20	67		FbNFO	5120-2	320			10	85		FbNFO
5112-4	112		1	8	76		NFO	5120-2	347		2	11	82		FbNFO
5112-4	149			15	75		FbNFO	5120-2	372			10	80		FbNFO
5112-4	171			10	79		FbNFO	5121-1	20			20	68		FbNFO
5112-4	191			10	80		NFO	5121-1	74			20	70		FbNFO
5112-4	219			15	74		FbNFO	5121-1	126			20	70		FbNFO
5112-4	238			15	75		FbNFO	5121-1	165			20	72		FbNFO
5112-4	274			9	82		NFO	5121-1	225			20	77		FbNFO
5112-4	311			17	72		FbNFO	5121-1	265			21	75		FbNFO
5112-4	347			5	30	55	NDO	5121-1	316			9	87		NFO
5112-4	352			5	55	37	DNFO	5121-1	358			10	85		FbNFO
5112-4	367			15	73		FbNFO	5121-1	378			10	81		FbNFO
5112-4	414			15	70		NbFO	5121-1	427			20	76		FbNFO
5112-4	445			5	80		NFO	5121-1	456			20	71		FbNFO
5112-4	468			20	70		FbNFO	5121-1	463			25	64		FNFO
5112-4	513			12	79		FbNFO	5121-1	480			12	80		FbNFO
5112-4	529			10	80		FbNFO	5121-1	491			15	79		FbNFO
5112-4	556			11	78		FbNFO	5121-1	519			10	78		NbFO
5115-1	10			15	72		NbFO	5130-2	10			27	65		FNFO
5115-1	42			12	77		FbNFO	5130-2	23			9	82		NFO
5115-1	73			10	73		NbFO	5130-2	34			9	85		NFO
5115-1	110			15	72		NbFO	5130-2	48			15	78		FbNFO
5115-1	136			12	74		NbFO	5130-2	80			8	86		NFO
5115-1	165			25	63		FbNFO	5130-2	116			3	94		NFO
5115-1	172			70	30		NFO	5130-2	158			8	83		NFO
5115-1	202			14	75		FbNFO	5130-2	210			7	86		NFO
5115-1	218			18	72		FbNFO	5130-2	218			17	73		FbNFO
5115-1	249			20	72		FUNFO	5130-2	238			50	42		FNFO
5115-1	210			10	83		FUNFO	5130-2	251			9	83		NFO
51151	318			10	86		FUNFO	5130-2	290			21	73		FUNFO
2112-1	332			12	76		FUNFO	5130-2	308			9	87		NFO

Table 15 Smear slide analysis on sediment cores from M 41/3

5130-2

352

FbNFO

13 76

5115-1

389

11 82

FbNFO

Tab	ole	15	continued

Diatoms

Nannofossils

D

NF

Station	depth [cm]	Qz	С	F	NF	D	Туре	-	Station	depth [cm]	Qz	С	F	NF	D	Туре
5130-2	402			12	83		FbNFO	•	5137-2	12			25	49		FNFO
5130-2	418			9	85		NFO		5137-2	89			15	72		NbFO
5130-2	447			10	82		FbNFO		5137-2	144			10	78		NbFO
5130-2	495			9	88		NFO		5137-2	205			10	78		NbFO
5130-2	516			8	87		NFO		5137-2	243			11	78		NbFO
5131-1	12			20	74		FbNFO		5138-1	53			25	65		FNFO
5131-1	81			18	74		FbNFO		5138-1	175			13	79		FbNFO
5131-1	210			21	71		FbNFO		5139-2	8			8	82		NFO
5132-1	20			15	78		FbNFO		5139-2	62			8	82		NFO
5132-1	40			9	83		NFO		5139-2	200			9	81		NFO
5132-1	80			5	86		NFO		5139-2	262			60	30		NbFO
5132-1	193			10	79		NbFO		5139-2	290			90	5		FO
5132-2	11			25	63		FNFO		5139-2	350			15	73		FbNFO
5132-2	45			5	87		NFO		5139-2	408			12	78		FbNFO
5132-2	61			10	85		FbNFO		5139-2	455			9	80		NFO
5132-2	78			10	85		FbNFO		5139-2	468			7	87		NFO
5132-2	112			20	75		FbNFO		5139-2	496			3	92		NFO
5132-2	171			12	81		FbNFO		5139-2	542			7	88		NFO
5132-2	211			20	76		FbNFO		5140-1	16			20	69		FbNFO
5132-2	254			10	85		FbNFO		5140-1	71			55	35		NbFO
5132-2	306			3	91		NFO		5140-1	88			50	43		NbFO
5132-2	322			15	83		FbNFO		5140-1	143			20	73		FbNFO
5133-1	4			20	73		FbNFO		5140-1	177			25	68		FNFO
5133-1	29			25	67		FNFO		5140-1	215			23	69		FbNFO
5133-1	78			20	74		FbNFO		5140-1	228			18	77		FbNFO
5133-1	139			17	75		FbNFO		5140-1	255			14	81		FbNFO
5133-1	186			15	76		FbNFO		5140-1	287			9	86		NFO
5133-1	225			20	76		FbNFO		5140-1	337			21	74		FbNFO
5133-1	254			12	78		FbNFO		5140-1	275			10	83		FbNFO
5133-1	289			10	86		FbNFO		5140-1	382			15	80		FbNFO
5133-1	334			10	84		FbNFO		5142-1	8			23	60		NbFO
5133-1	392			12	84		FbNFO		5142-1	62			15	73		NbFO
5133-1	440			14	81		FbNFO		5142-1	84			10	80		FbNFO
5133-1	467			12	81		FbNFO		5142-1	129			17	73		FbNFO
5133-1	483			10	83		FbNFO		5142-1	144			9	90		NFO
5133-1	500			3	95		NFO		5142-1	164			8	87		NFO
5134-2	103			11	79		FbNFO		5142-1	195			8	84		NFO
5134-2	224			10	79		FbNFO		5142-1	222			5	90		NFO
5135-2	10			20	70		FbNFO		5142-1	239			8	87		NFO
5135-2	45			75	15		NbFO		5142-1	259			10	81		FbNFO
5135-2	113			15	76		FbNFO		5142-1	278			11	83		FbNFO
5136-1	17			10	78		FbNFO		5142-1	297			9	80		NFO
5136-1	107			5	79		NFO		5142-1	337			10	82		FbNFO
5136-1	174			10	74		FbNFO		5142-1	372			10	85		FbNFO
5136-1	208			12	72		FbNFO		5142-1	402			10	80		FbNFO
5136-1	274			12	72		FbNFO		5142-1	435			15	81		FbNFO
5136-1	380			6	88		NFO		5142-1	460			15	77		FbNFO
5136-1	500			10	77		NhFO		5142-1	516			12	83		FbNFO
									5142-1	548			10	80		FbNFO
Quartz			(Qz			Nannofoss	ilooze	NFO		Nani	nofos	ssil bea	ring F	⁷ O	NbFO
Clay			(2			Foraminife	erooze	FO		Nam	nofos	ssil Dia	tomo	oze	NDO
Ooze			(5			Clay bearing	ng NFO	CbNF	0	Nam	nofos	ssil For	amini	ferooz	e N-FO,
Foraminife	ers		I	7			Diatom-Na	annofossilooze	DNFO)	NF t	pearin	ng Fora	minif	ferooze	 NbFO

FbNFO

FNFO

698

Foraminifer bearing NFO

Foraminifer NFO

4.5.5 Carbonate Content Measuring

(R. Höppner, B. Kottke, S. Rath)

Variations in carbonate content mainly reflect changes between marine, carbonate-dominated sedimentation during high sea-level (interglacials) and terrigenous, carbonate-impoverished sedimentation during low sea-level (glacials). The carbonate mainly origins from skeletons of marine phytoplankton (Coccolithophores, Dinoflagellates) and zooplankton (benthic and planktonic foraminifera, pteropods). Periodical changes can be interpreted as orbital variations (precession, obliquity, eccentricity). The reliability of carbonate content measuring can be tested by various parameters investigated on board (magnetic susceptibility - see Chapter "4.6 Physical properties", light reflectance - see Chapter 4.5.4 "Lithologic Core Summary"). Carbonate contents were measured on board using a "carbonate-bomb". Sediment cores GeoB 5115-1 and GeoB 5116-2 were measured for their carbonate content:

Samples were taken in 10 cm intervals, oven dried at 40°C, weighed in 1 g portions and finally treated with HCl (25 %). The CaCO₃ content in percent of each sample was ascertained by measuring the CO₂ pressure passing a photovoltaic cell. The absolute error of a single determination is given as about 1 % calcium carbonate (Müller and Gastner 1971). Comparisons with other carbonate investigation methods (e.g. LECO) show that the bias of the "carbonate bomb" is always less than 0.5 %.

Generally the sediments are rich in carbonate. Both of the cores were taken at water depths which are above the recent carbonate compensation depth (CCD) from the western part of the Mid-Atlantic Ridge. Although some parts obviously show a disturbed sedimentation pattern (turbidites), all samples were investigated. In general carbonate values vary from 65 wt % up to more than 96 wt % (see Table 16). The deeper core (GeoB 5115-1) shows a slight pattern of alternating higher and lower carbonate contents, indicating interglacial and glacial variations (see Fig. 57).

No.	Sample	Depth	GeoB 5115-1	GeoB 5116-2			
	weight		CaCO3 content	CaCO3 content			
			[wt %]	[wt %]			
1	1,0	3	66,6	82,7			
2	1,0	13	64,9	90,4			
3	1,0	23	71,7	92,6			
4	1,0	33	67,5	90,0			
5	1,0	43	65,3	91,3			
6	1,0	53	69,3	91,8			
7	1,0	63	73,0	93,1			
8	1,0	73	73,7	93,1			
9	1,0	83	74,1	94,4			
10	1,0	93	74,4	93,4			
11	1,0	103	71,0	90,0			
12	1,0	113	69,5	92,6			
13	1,0	123	74,1	93,1			
14	1,0	133	80,0	91,3			
15	1,0	143	81,4	90,6			
16	1,0	153	81,9	90,9			
17	1,0	163	81,7	92,9			
18	1,0	173	86,5	93,6			
19	1,0	183	85,9	92,4			
20	1,0	193	81,9	92,5			
21	1,0	203	84,9	92,8			
22	1,0	213	82,4	91,2			
23	1,0	223	82,8	92,4			
24	1,0	233	88,2	92,1			
25	1,0	243	91,4	86,6			
26	1,0	253	93,3	92,1			
27	1,0	263	92,8	90,1			
28	1,0	273	90,5	94,8			
29	1,0	283	89,0	93,4			
30	1,0	293	09,7 88.0	09,1			
32	1,0	313	87.5	93,3			
33	1,0	313	88 7	94,0			
34	1,0	323	89.3	90.7			
35	1,0	343	80,0	95.9			
36	1,0	353	88.2	94.3			
37	1.0	363	88.5	96.7			
38	1.0	373	87.6	95.4			
39	1.0	383	87.9	92.5			
40	1.0	393	87.4	97.8			
41	1,0	403	88,9	95.8			
42	1,0	413	,	95,4			
43	1,0	423		95,2			
44	1,0	433		87,9			
45	1,0	443		86,7			
46	1,0	45 3		89,1			
47	1,0	463		91,3			
48	1,0	473		93,7			
49	1,0	483		90,7			
50	1,0	493		92,3			
51	1,0	503		92,1			
52	1,0	513		92,4			
53	1,0	523		91,2			
54	1,0	533		90,9			

Table 16 Carbonate content of the gravity cores GeoB 5115-1 and 5116-2

Fig. 57 Reliability tests of the gravity cores GeoB 5115-1 and GeoB 5116-2

4.5.6 Particle Size Distribution

(R. Höppner, B. Kottke, S. Rath)

The circulation of water masses plays an essential role in oceanographic exploration and the reconstruction of material transfer in marine systems. Information on flow conditions is preserved in characteristic sediment distributions. These distributions reflect regional circulation patterns and sea floor morphology. Large parts of the deep ocean basins and the nearby continental margins are characterised by geostrophic currents moving with speeds of 5-20 cm/s (McCave et al. 1980). These regional variable flow velocities lead to the formation of typical sediment associations and special particle distribution patterns.

Coarse grain sizes reflect high velocity currents, thereby washing out the fine fraction. Uniform steady flows (e.g. contourites) lead to the deposition of well- to medium-sorted grain sizes, transporting a defined range of sediment particles. Accumulative sediment patterns are produced by low velocity currents, which are responsible for the sedimentation of finer grain sizes. Therefore, the silt fraction is sensitive to speed variations of marine currents (Ledbetter 1984, 1986).

During cruise M 41/3, 18 multicorer (MUC) and giant box corer (GKG) samples were collected (see Chapter 8). The undisturbed sediment cores were cut into 1 cm slices and deep-frozen at -20°C. At Bremen University, these samples will be wet-sieved, splitted into sand-, silt- and clay-sized particles, dried and decarbonated with HCl. Afterwards the settling velocity of each non-biogenic sample will be measured with a silt-settling-tube and a particle-size-analyser (Sedigraph) in order to evaluate the grain size distribution and the mean particle sizes. These sediment parameters, in combination with the hydrosphere data (salinity, pressure, temperature, etc.), will provide a better understanding of regional circulation patterns and local marine current systems.

4.5.7 Organic Petrology and Geochemistry

(R. Höppner, B. Kottke, S. Rath)

The quantitative assessment of the marine versus terrigenous fraction of particulate organic matter in marine sediments is of fundamental importance to discuss sedimentary organic carbon records with regard to climate-induced changes in paleoproductivity and the supply of terrigenous matter. To calibrate modern climatic and oceanographic conditions in the South Atlantic to surface sediments, organic petrologic studies are performed. Evaluation of factors controlling organic matter sedimentation during late Quaternary climatic cycles are deduced from selected glacial-interglacial core sections. These studies concentrate on the continental margins of South and West Africa and South America as well as the Equatorial Atlantic. Presumably, C4 organic material input as a part of the dust injection leads to a significant bias of the δ^{13} Corg signal in marine sediments.

On every sediment station (see Table 17) samples were taken from multicorer or box corer cores. The cores were cut in slices of 1 cm and were immediately stored at -20°C in the deep-freeze room. At Bremen University further investigations, e.g. organic microscopy and mazerale analysis, will be carried out.

Core	Coretype	Latitude	Longitude	Depth	Recovery	Particle size	Organic petrol.
GeoB			-	[m]	[cm]	distribution	and geochem.
5110-5	GKG	25°54,30'S	35°38,40'W	4206	45	x	X
5112-5	GKG	23°49,54'S	16°15,56'W	3841	27	х	х
5115-2	MUC	24°08,66'S	14°02,57'W	3292	24	х	х
5116-1	MUC	24°09,58'S	13°46,24'W	2256	26	х	х
5117-2	MUC	24°08,84'S	13°58,43'W	3039	16	х	Х
5120-1	MUC	24°10,20'S	12°21,69'W	3847	16	х	х
5121-2	MUC	24°10,98'S	12°01,26'W	3488	16	х	х
5130-1	MUC	19°24,26'S	09°27,56'W	4165	16	х	х
5132-2	MUC	19°07,48'S	09°43,17'W	3941	14	х	х
5133-3	MUC	19°05,18'S	10°11,54'W	3661	15	х	х
5134-1	MUC	19°02,70'S	10°41,04'W	3411	19	х	х
5135-1	MUC	19°26,17'S	11°03,78'W	3303	20	х	х
5136-2	MUC	19°22,15'S	12°40,21'W	3227	18	х	х
5137-1	MUC	19°17,41'S	13°27,22'W	3500	17	х	х
5138-2	MUC	19°11,40'S	14°39,27'W	3631	20	х	х
5139-1	MUC	19°00,80'S	15°49,97'W	3903	10	х	
5140-3	MUC	19°03,21'S	16°36,76'W	3660	13	х	х
5142-2	MUC	19°05,40'S	17°08,60'W	3946	12	х	X .

Table 17 Positions of all samples taken with respect to organic investigations

4.6 Physical Properties Studies

(T. Frederichs, K. Fabian, J. Funk)

The complete sediment series recovered during METEOR Cruise M 41/3 with the gravity corer were subject to laboratory geophysical studies. Shipboard measurements on the segmented cores routinely comprised three basic physical parameters:

- compressional (p-) wave velocity v_p,
- electric resistivity R_s (as a measure of density and porosity), and,
- magnetic volume susceptibility κ .

These properties are closely related to lithology and grain size of the sediments and provide high-resolution core logs (spacing 1 cm for p-wave velocity, 2 cm for electric resistivity and magnetic volume susceptibility) available prior to all other detailed investigations. In addition, oriented samples for subsequent shore-based rock and paleomagnetic studies were taken at routine intervals of 5 cm.

4.6.1 Physical Background and Experimental Techniques

The experimental setups for the shipboard measurements were basically identical to those of previous cruises. Their descriptions are therefore kept brief here. A more detailed treatment of the experimental procedures are given in Wefer et al. (1991) for R_s and Schulz et al. (1991) for v_p .

P-Wave Velocity

The p-wave velocity v_p is derived from digitally processed ultrasonic transmission seismograms recorded perpendicular to the core axis with a fully automated logging system. First arrivals are picked using a cross-correlation algorithm based on the 'zero-offset' signal of the piezoelectric wheel probes. Combined with the core diameter d, the travel time of the first arrivals t yields a p-wave velocity profile with an accuracy of 1 to 2 m/s

$$v_p = (d - d_L) / (t - t_0 - t_L)$$

where d_L is the thickness of the liner walls, t_L the travel time through the liner walls and t_0 the 'zero-offset' travel time.

Following Schultheiss and McPhail (1989), a temperature calibration of v_p is effected using the equation

$$v_{20} = v_T + 3 \cdot (20 - T)$$

where v_{20} is the p-wave velocity at 20 °C and T the temperature (in °C) of the core segment when logged. Simultaneously, the maximum peak-to-peak amplitudes of the transmission seismograms are evaluated to estimate attenuation variations along the sediment core. P-wave profiles can be used for locating strong as well as fine-scale lithological changes, e.g., turbidite layers or gradual changes in the sand, silt or clay content.

Electrical Resistivity, Porosity, and Density

The electrical sediment resistivity R_s was determined using a handhold sensor with a miniaturized four-electrodes-in-line ('Wenner') configuration (electrode spacing: 4 mm). A rectangular alternating current signal is fed to the sediment about 1 cm below the split core surface by the two outer electrodes. Assuming a homogeneously conducting medium, the potential difference at the inner two electrodes will be directly proportional to the sediment resistivity R_s . An integrated fast resistance thermometer simultaneously provides data for a temperature correction.

According to the empirical ARCHIE's equation, the ratio of sediment resistivity R_s and pore water resistivity R_w can be approximated by a power function of porosity ϕ

$$R_s/R_w = k \cdot \phi - m$$

Following a recommendation by Boyce (1968), suitable for sea water saturated clay-rich sediments, values of 1.30 and 1.45 were used for the constants k and m, respectively. The calculated porosity ϕ is subsequently converted to wet bulk density ρ_{wet} using the equation (Boyce 1976)

$$\rho_{\text{wet}} = \phi \cdot \rho_{\text{f}} + (1 - \phi) \cdot \rho_{\text{m}}$$

with a pore water density ρ_f of 1030 kg/m³ and a matrix density ρ_m of 2670 kg/m³. For the sake of an unbiased uniform treatment of all cores, these empirical coefficients were not adapted to individual sediment lithologies at this stage. Nevertheless, at least relative density changes should be well documented.

Magnetic Volume Susceptibility

The magnetic volume susceptibility κ is defined by the equations

$$\mathbf{B} = \mu_0 \cdot \mu_r \cdot \mathbf{H} = \mu_0 \cdot (1 + \kappa) \cdot \mathbf{H} = \mu_0 \cdot \mathbf{H} + \mu_0 \cdot \kappa \cdot \mathbf{H} = \mathbf{B}_0 + \mathbf{M}$$

with the magnetic induction B, the absolute and relative permeabilities μ_0 and μ_r , the magnetizing field H, the magnetic volume susceptibility κ and the volume magnetization M. As can be seen from the third term, κ is a dimensionless physical quantity. It records the amount to which a material is magnetized by an external magnetic field.

For marine sediments the magnetic susceptibility may vary from an absolute minimum value of around $-15 \cdot 10^{-6}$ (diamagnetic minerals such as pure carbonate or silicate) to a maximum of some $10.000 \cdot 10^{-6}$ for basaltic debris rich in (titano-) magnetite. In most cases κ is primarily determined by the concentration of ferrimagnetic minerals, while paramagnetic matrix components such as clays are of minor importance. High magnetic susceptibilities indicate high concentrations of lithogenic compounds / high iron (bio-)mineralization or low carbonate / opal productivity and vice versa. This relation may serve for the mutual correlation of sedimentary sequences which were deposited under similar global or regional conditions.

The measuring equipment consists of a commercial BARTINGTON M.S.2 susceptibility meter with a 125 mm loop sensor and a non-magnetic core conveyor system. Due to the sensor's size, its sensitivity extends over a core interval of about 8 cm. Consequently, sharp susceptibility changes in the sediment column will appear smoothed in the κ core log and, e.g., thin layers such as ashes cannot appropriately be resolved by whole-core susceptibility measurement.

4.6.2 Shipboard Results

Sampling Sites and Recovery

The gravity coring program of Cruise M 41/3 concentrated primarily on two transects across the mid-Atlantic Ridge. One from the Brazil Basin into the Angola Basin at 24°S (about 16 to 12°W), including cores GeoB 5112-4, 5115-1, 5116-2, 5117-1, 5120-2, 5121-1 covering water depths between 2550 and 3844 m. A reversed profile from the Angola Basin into the Brazil Basin at 19°S (about 9 to 17°W) comprises of cores from water depths between 3227 and 4165 m (GeoB 5130-2, 5131-1, 5132-1/3, 5133-1, 5134-2, 5135-2/3, 5136-1, 5137-2, 5138-1, 5139-2, 5140-1/2, 5142-1). Some of the sites had to be sampled twice due to the difficult morphological and lithological environment of the Mid-Atlantic Ridge area. One gravity core was recovered at the northwestern extension of the Vema Channel (26° S / 36° W) at a water depth of 4188 m (GeoB 5110-4).

The recovery varied between 30 (core GeoB 5135-3) and 961 cm (core GeoB 5110-4). A total of 22 sediment cores with a cumulative length of 84 m was investigated (see upper part of Figure 58). Additionally electric resistivity measurements of seven cores from cruise M 41/1 (GeoB 4903-4, 4910-2, 4913-6, 4915-4, 4916-2, 4917-8, 4918-5) and two more cores from cruise M 41/2 (GeoB 5007-2 and 5008-2), which were opened during M 41/3, were performed. The results of these cores are presented in the cruise reports of M 41/1 and M 41/2, respectively.

General Results

The general characteristics of the physical properties are compiled in the lower part of Figure 58. Dots mark the mean values of compressional wave velocity, density and magnetic susceptibility for the individual cores, vertical bars denote their standard deviations. Each diagram is divided into three sections according to the three working areas, separating data sets from the Vema Channel, the 24°S and the 19°S profile through the Brazil Basin (BB) and the Angola Basin (AB).

The average p-wave velocities range from 1477 to 1552 m/s. The data of the 24°S profile show increasing velocities with decreasing water depth, which might be due to stronger water currents at the top of the mid-Atlantic Ridge resulting in a winnowing of finer particles. Another possible explanation is a different conservation status of foraminifera shells, which

Fig. 58 Mean compressional wave velocities, densities and magnetic susceptibilities of cores GeoB 5110-4 through 5142-1 as compared with variations in water depth at the sampling sites and core recovery. The vertical bars denote standard deviations. Data sets are classified according to the three working areas, the Vema Channel, the 24°S profile from the Brazil Basin (BB) into the Angola Basin (AB) and the reversed profile at 19°S

might be more dissolved in deeper water leading to smaller particle sizes and therefore lower p-wave velocities. V_p values of cores from the 19°S transect exhibit no well developed trends in relation to water depth. The high velocities of core GeoB 5140-1, the highest values of all cores, are quite remarkable. Core GeoB 5110-4, from the Vema Channel, shows the lowest velocity data, reflecting the quite different depositional regime at this site.

Overall, average densities (1385 to 1574 kg/m³) parallel the results of p-wave velocity measurements of increasing density with decreasing water depth for the 24°S profile. The data of the 9°S profile shows only weak variations with no consistent relationship to water depth.

As for p-wave velocity, the lowest mean density (1385 kg/m^3) was found for the sediments from the Vema Channel (GeoB 5110-4).

Mean susceptibilities vary from 24 to 116·10⁻⁶ SI for the entire core collection, except for core GeoB 5110-4 (Vema Channel) which mean value is three times higher (313·10⁻⁶ SI). In the case of the 24°S profile, it decreases with decreasing water depth. The lower concentration of magnetominerals on bathymetric highs may support the suggestion of winnowing of finer grain sizes by enforced water currents, considering the fact that magnetic minerals are constituents of the finest grain size fraction. The mean susceptibilities of the cores from the 19°S transect through the Brazil Basin show no uniform weak variations whereas mean susceptibilities of cores from the Angola Basin are almost of the same value regardless of water depth.

Physical property logs for the individual cores are shown in Figs. 35 to 56 together with the visual core descriptions.

Special Features

Vema Channel (Core GeoB 5110-4)

This core, consisting mainly of clay bearing nannofossil ooze, differs from all the other cores in all of its physical properties, reflecting a totally different depositional environment. These sediments from the northwestern outlet of the Vema Channel bear distinctly higher concentrations of fine-grained terrigenous material resulting in high magnetic susceptibility (mean $313 \cdot 10^{-6}$ SI), low compressional wave velocities (mean 1477 m/s) and densities (mean 1385 kg/m³). The core base may be of a similar age as cores GeoB 3822-3 and 3823-1 recovered during METEOR cruise M 34/3 according to their susceptibility logs.

24°S Profile Brazil Basin (Cores GeoB 5112-4, 5115-1, 5116-2, 5117-1)

Mean susceptibilities range from 34 to $116 \cdot 10^{-6}$ SI, densities from 1447 to 1573 kg/m^3 , and pwave velocities from 1488 to 1526 m/s. Susceptibility patterns of cores from water depths below 3000 m can be correlated to a well dated curve of stacked susceptibilities of cores recovered on a transect at about 30°S during METEOR M 34/3 (Schmieder, in prep.) This 'susceptibility stratigraphy' (Schmieder 1996) gives a maximum sediment age of 780 ka for core GeoB 5112-4. Sedimentation rates can be calculated to 0.7 to 1.0 cm/ky for cores GeoB 5112-4, 5115-1, 5117-1. A thin peak of v_p in core GeoB 5112-4 can be attributed to a laminated diatom bearing nannofossil ooze, perhaps the same feature which was found during METEOR cruise M34/3 in cores GeoB 3801-6 and 3813-3. High v_p -values in core GeoB 5115-1 at 175 to 181 cm and 35 to 275 cm are correlated to turbidites.

24°S Profile Angola Basin (Cores GeoB 5120-2, 5121-1)

Sediments from the Angola Basin at 24°S consisting mainly of foram bearing nannofossil ooze show cyclic variations in their magnetic susceptibility (mean values 56 to $72 \cdot 10^{-6}$ SI). Mean densities range from 1488 to 1498 kg/m³, p-wave velocities from 1492 to 1500 m/s. Peak values of compressional wave velocities in core GeoB 5120-2 in depths of 65 to 83, 134 to 155, and 309 to 348 cm correlate with turbidites and laminated sequences, respectively. The quite obvious correlation of the magnetic susceptibility pattern of core GeoB 5121-1 to the stacked susceptibility of 30°S cores (Schmieder, 1996) results in a core base age of around 750 ky and a corresponding sedimentation rate of 0.7 cm/ky.

19°S Profile Brazil Basin (Cores GeoB 5136-1, 5137-2, 5138-1, 5139-2, 5140-1, 5142-1)

Sediments from the Brazil Basin at 24°S yield p-wave velocities of 1485 to 1552 m/s, densities of 1450 to 1574 kg/m³ and magnetic susceptibilities of 33 to $105 \cdot 10^{-6}$ SI. It is remarkable that v_p and density on the one hand and magnetic susceptibility on the other correlate negatively in cores GeoB 5136-1, 5139-2, and 5142-1, but positively in cores GeoB 5137-2, 5138-1, and 5140-1. The last three cores were recovered from intermediate water depths of around 3500 to 3700 m, whereas the first three originate from a more shallow water depth (GeoB 5136-1, 3227 m) as well as from deeper water depths of about 3900 m. The most prominent feature in core GeoB 5139-2 is a 80 cm thick turbidite from 220 to 319 cm. A thin turbidite also occurs in core GeoB 5136-1 at 250 to 260 cm depth. Core GeoB 5142-1 exhibits cyclic variations in

all three physical parameters without any turbidites. According to the 'susceptibility stratigraphy' mentioned before, which can be applied to all cores except core GeoB 5139-2 whose magnetic susceptibility shows no characteristic variations in the upper three meters, sedimentation rates can be calculated to values of 0.7 (GeoB 5137-2) to 1.0 cm/ky (GeoB 5140-2). The oldest sediments with an age of about 690 ka were recovered in core GeoB 5142-1 which shows a well developed cyclic susceptibility signal.

19°S Profile Angola Basin (Cores GeoB 5130-2, 5131-1, 5132-3, 5133-1, 5134-2, 5135-2)

Mean densities of 1502 to 1538 kg/m³, compressional wave velocities of 1492 to 1503 m/s and magnetic susceptibilities of 24 to $43 \cdot 10^{-6}$ SI were found for sediments from the Angola Basin at 19°S. High p-wave velocities and densities of core GeoB 5130-2 at 31 to 41 cm and 217 to 248 cm are correlated with a turbidite and a laminated silty-sandy foram bearing nannofossil ooze. Variations in the magnetic susceptibility of the upper two meters are very weak, whereas the lower sediment sequences show clearly developed cyclic patterns. These cyclic variations can be found throughout the whole sediment column of core GeoB 5132-3. Peaks of magnetic susceptibility are correlated with minima in p-wave velocity and density. Using the technique of 'susceptibility stratigraphy', the oldest sediments with an age of 630 ka were recovered in core GeoB 5133-2. Mean sedimentation rates of 0.5 (GeoB 5132-3) to 0.9 cm/ky (GeoB 5134-2) can be calculated by this method.

4.7 Underway Geophysics

(B.Laser and Shipboard Scientific Party)

Introduction

During METEOR Cruise M 41/3 the shipboard acoustical systems HYDROSWEEP and PARASOUND were used on a 24 hour schedule to record continuous high resolution bathymetric and sediment echosounding profiles. The digitization and storage of the echosounding seismograms were realized using the software package PARADIGMA (Spieß, 1993).

The underway geophysical program along several profiles in the Southern Brazil Basin, Santos Plateau, Rio Grande Rise, Vema Channel, the Mid-Atlantic Ridge and finally the central Brazil Basin is part of the long term research program Sonderforschungsbereich 261, the complete

coverage of the South Atlantic Ocean with a net of sampling stations and geophysical profiles. The data recorded along the profiles provided valuable information for finding suitable coring stations from different sedimental environments of the Mid-Atlantic Ridge.

Recording Parameters and Preliminary Data Processing

The shipboard sediment echosounder PARASOUND and the multibeam echosounder HYDROSWEEP were operated by the scientific crew during a 24 hour watch. Both systems worked without severe technical problems.

The registration and recording system HYDROMAP ONLINE (STN-Atlas-Elektronik,1994) which was installed on RV METEOR in December, 1996, allowed an increased online control of the swath-data quality by permitting the display of several different survey data sets at one time in a windowed screen layout. Rough sea bottom topography, as found at the Mid-Atlantic Ridge, caused problems to the system. Some profiles in such areas suffer from a poor coverage of the bottom topography. The raw data recording was performed continuously.

The multibeam sounder provides bathymetric data with a swath width of twice the water depth and, in combination with the sediment echosounder PARASOUND, proved to be a very efficient aid for the selection of suitable coring stations. The precise knowledge of the local topography is essential to select suitable sites and to evaluate the impact of morphology, slope angles and sediment instabilities on the continuity of sedimentation.

The sediment echosounding data were routinely registered as analogue paper recordings with the DESO 25 device and at the same time digitally by means of the PARADIGMA 4.02 system (Spieß 1992). The data were stored directly on 6250 bpi, 1/2" magnetic tapes using the standard, industry-compatible SEGY-format.

The seismograms were sampled at 40 kHz with a typical registration length of 266 ms for a depth window of \sim 200 m. The source signal was a non band limited sinusoidal wavelet of 4 kHz dominant frequency with a duration of 2 periods.

A preprocessed profile plot was produced online with a vertical depth scale of several hundred meters to eliminate most of the changes in window depth. To improve the signal to noise ratio, the seismogram sections were filtered with a steep band-pass filter of 2.5 - 6 kHz. In addition the data were normalized to a constant value much smaller than the maximum average amplitude. In particular, deeper and often weaker reflections could thereby be amplified. These

plots provided a first impression of variations in sea floor morphology, sediment coverage and sediment patterns along the ships track.

Shipboard Results

During cruise METEOR M 41/3 two profiles of sediment cores were taken across the Mid-Atlantic Ridge at 24° and 19° South. An additional core was taken in the Southern Brazil Basin, north of the Vema Channel. These coring locations were found by the aid of the PARASOUND and HYDROSWEEP systems on this cruise. The PARASOUND data provided information about the the physical state of the sea bottom as well as about sediment structures up to a depth of 50m below the sea floor. The penetration of the PARASOUND signal depends on the density of the uppermost sediment layers and the impedance contrasts between these layers and at the sea floor. Thus, the penetration was used as a first indication of the quality of a coring location.

Due to the limitation of the PARASOUND system to sea bottom slopes less than 6° profiles in ridge areas and fracture zones show a generally lesser quality. At the Mid-Atlantic Ridge signal, typical penetration was not higher than a few meters. However, it was possible to identify sediments in more even areas or in relatively small basins.

The sediments in the western work area, in and north of the Vema Channel, showed the influence of relatively strong currents. In the deep channels, the reflection patterns of PARASOUND indicate almost none, or to a high degree sorted sediments. Mostly, only a strong, elongated sea bottom reflector could be observed. On the Santos Plateau and in the Southern Brazil Basin north of the Vema Channel, sediment waves were found in water depths between ~3700 m and ~4200 m.

The cruise M 41/3 led the ship to extremely different sedimentary environments including ridges and fracture zones, deep sea basins and the strongly current influenced area of the Vema Channel. More than 12 Gbyte of data were recorded during the long steaming times between the work areas and during the search for suitable coring locations. The following examples are intended to give a short overview of the sediment structures which were found. The complete track of RV METEOR cruise 41/3 with indicated sampling locations and PARASOUND profiles shown in this chapter is given in Fig. 59.

Vema Channel and Southern Brazil Basin

Fig. 60 shows an enlarged map of the south-western investigation area where the PARASOUND profiles presented in Figs. 61 through 64 are indicated.

Mud waves are a prominent feature of the current controlled sedimentation around the Rio Grande Rise, Santos Plateau and north of the Vema Channel. The first occurence of mud waves during cruise M 41/3 was on the Santos Plateau between 28°30.1'S / 40°52.7'W and 29°20.3'S / 40°29.7'W. The profile shown in Fig. 61 ranges from 3750 m water depth to 4100 m water depth. The mud waves are symmetrical and vary in length and amplitude along the profile. In the upper part of the profile, the mud waves seem to be superimposed on an also wavy underlying topography. Due to the high speed of the vessel, only the morphology of the mud-wave field is imaged in the PARASOUND record, while its inner structure is not resolved.

Another example of symmetrical mud waves is given in Fig. 62. These mudwaves were observed north of the Vema Channel in ~4200m water depth between $26^{\circ}36.9^{\circ}S / 34^{\circ}22.9^{\circ}W$ and $25^{\circ}40.1^{\circ}S / 33^{\circ}54.7^{\circ}W$. The waves are irregular in length and height, they partly superimpose each other and grow together. The irregular geometry of the mud waves may be due to the two-dimensional character of the echosounder record. Only a suitable processing of the HYDROSWEEP data collected along the same track can reveal more information about these mud-wave fields such as the striking direction and lateral extension of the sediment structures.

Another effect of water currents on sediments is erosion and the re-deposition of eroded sediments. The Figs. 63 and 64 show PARASOUND recordings from the northern slope of the Rio Grande Rise and the southernmost Brazil Basin. The first example (Fig. 63) illustrates erosion and/or slumping at the northern slope of the Rio Grande Rise in a water depth of 4250 m to 4350 m. Further to the North-West (Fig. 64), well-layered, but not completely undisturbed sediments were found. The relatively high penetration of the PARASOUND signal indicates soft sediments and possibly high sedimentation rates. Therefore, these sediments may have been transported by deep currents to this location.

Mid-Atlantic Ridge

The sediments found on the Mid-Atlantic Ridge (MAR) area mainly vary with water depth. In greater depth, softer sediments are expected and the signal penetration should be higher.

Between ~20°S and ~25°S the MAR has the smallest longitudinal extension in the South-Atlantic and many transform faults found in this latitude further complicate the sea floor morphology. Thus, most of the the topograhy and sediment structures could not be imaged by the PARASOUND system, which does not receive useful echoes at slope angles of more than 2° . The coring positions at 19°S and 24°S were determined by using both the PARASOUND and HYDROSWEEP information.

Central Brazil Basin

The first PARASOUND profile crossing the central Brazil Basin between 15°S and 20°S was recorded during the RV METEOR cruise 41/3. On the larger part of this profile we observed the same reflection pattern consisting of three prominent reflector groups (Figs. 65, 66, 67). Each of the two upper reflector groups are formed by three distinct reflectors which seem to mark discordant layering. This assumption is very speculative, because the reflection patterns within and between these reflector groups is certainly difficult to interpret and seems to change along the profile (Fig. 66). If the pattern is caused by discontinuities in sedimentation it would reflect large scale changes in bottom water circulation in the central deep Brazil Basin. In any case these data reflect some kind of 'events' with influence within the entire central deep Brazil Basin at these latitudes.

The reflection pattern described above was first observed at ~25°30'W (Fig. 65) and can be identified well as far as ~29°40'W. The PARASOUND record along this track is interrupted by several local highs caused by buried ridges parallel to the MAR. Between these highs the reflection pattern can be correlated well. West of ~29°40'W, the sedimentation changes with slowly decreasing water depth. However, structures similar to those in the deep basin can be observed until ~32°30'W, where the sub-bottom image delivered by the PARASOUND system completely changes due to the changing morphology while approaching the South-American continental margin.

RV Meteor Cruise 41, Leg 3, Vitória-Salvador

134

Fig. 60 Track of RV METEOR Cruise M 41/3 in the Vema Channel research area. Sampling locations and PARASOUND profiles shown in Figs. 61 to 64 are annotated

Fig. 61 Digital PARASOUND profile from the Santos Plateau at the western flank of the Vema Channel. The profile shows symmetric but irregularly sized and distributed mud waves. The geometry and character of a suggested mud wave field

RV

Fig. 63 Digital PARASOUND profile from the northern slope of Rio Grande Rise. Slumps can be observed on top of a layered but erosionally truncated sediment body in the lower part of the profile. The upper part also shows a more complex seismic discordance separating slumps or younger sediments from the underlying sequence

Fig. 64 Digital PARASOUND profile from the southernmost Brazil Basin north of Rio Grande Rise. The deep penetration of the PARASOUND signal and the fine layering suggest soft sediments and relatively high sedimentation rates for the area. The sediments at this location may have been transported by deep currents

RV Meteor Cruise 41, Leg 3, Vitória-Salvador

Fig. 65 Digital PARASOUND profile from the deep central Brazil Basin. The profile shows the first recorded occurence of a reflection pattern which could be identified from $\sim 25^{\circ}$ W to $\sim 29^{\circ}$ W (see text)

140

Fig. 66 Digital PARASOUND profile from the deep central Brazil Basin. The profile shows the best resolution of the reflection pattern found throughout the deep part of the basin (see text)

RV Meteor Cruise 41, Leg 3, Vitória-Salvador

Fig. 67 Digital PARASOUND profile from the deep central Brazil Basin. The profile is located close to the easternmost clear occurence of the typical reflection pattern for this area (see text). In the center of the figure the reflection pattern suggests a seismically discordant layering
5 Ship's Meteorological Station

(C. Knaack, D. Bassek)

The 3rd leg of RV METEOR cruise no. 41 began on April 18, 1998 at 08:15 local time in Vitória (Espirito Santo). The ship set out on a southerly course. A northerly wind of force 5, occasionally 6 was blowing, caused by an intense subtropical high lying over the eastern South Atlantic. During the first night, the cold front of a low off the south Brasilian coast crossed our route with thunderstorms and gusts.

On April 20 at noon, the first waypoint near $2^{\circ}S / 41^{\circ}W$ (Vema Channel) was reached. An upper trough brought some intense rain showers with gusts during the morning, later the weather was rather calm. A southwestern swell of about 3 m height did not affect the scientific work considerably. The next day RV METEOR reached the southernmost point of the cruise at $31.3^{\circ}S / 39.3^{\circ}W$. High pressure influence favoured our research work, which included the deployment of a near bottom mooring. Course was then set northeastwards to the operational area in the northern part of the Vema Channel. The weather pattern during the next days was as follows: an anticyclone between Tristan da Cunha and South Africa connected by a high pressure ridge with another anticyclone over the western part of the ocean causing an easterly flow of approximately force 5. In front of a south Brasilian low which moved eastwards, the wind backed to the north on April 24 and to the northwest on April 25. A cold front caused increasing winds of force 6 to 7 and passed us with heavy rain showers accompanied by gusts. On the rear side of this "lull front" the wind abated.

On April 28 a zonal section across the Mid-Atlantic Ridge began at 24° S / 20° W. The dominant high moved from a southwestern position to the east, causing mostly easterly winds between forces 1 and 5. Now and then, the typical calmness of the horse latitudes was observed. The southerly swell of 1.5 to 2.5 m height temporarily made the navigation during stations difficult, as its direction differed from that of the wind. The high pressure influence lasted during the meridional section at 9°E and also during the final zonal section at 19°S from 9°W to 17°W.

With the help of our radio soundings during this time, the characteristic trade wind inversion was observed. From the surface up to 1200 - 1500 m height the temperature dropped from about 23° C to $11 - 13^{\circ}$ C, reaching a maximum relative humidity. In the next layer of only a few hundred meters, the temperature increased up to $17 - 20^{\circ}$ C. Above this level, temperature decreased with the tropospheric lapse rate of 0,65 K/100 m. Below the inversion, mostly flat

cu clouds were observed, although almost overcast sc layers also appeared. From time to time humidity and instability caused convection with towering cu clouds and some rain showers. On April 29 a water spout occurred.

On May 10, 1998 the scientific work on board was completed. Over the last days of the cruise, rear winds of force 4 - 5 accompanied RV METEOR during the northwesterly route to Salvador (Bahia), where we arrived safely in the morning of May 15, 1998.

6 Acknowledgements and Concluding Remarks

The goals of the research program of RV METEOR cruise 41/3 were fully achieved. All measuring systems functioned flawlessly. One mooring was successfully deployed in the central Vema Channel. 42 stations were covered using different equipment 75 times. 22 gravity cores, 21 multicores and 2 box cores were taken, at 25 stations CTD profiles were measured and water samples were taken with both the CTD/rosette and the rosette. In addition, plankton samples taken from the ship's pumps. PARASOUND and HYDROSWEEP recordings were performed during 600 nm between 20.04.1998 09:00 UTC and 14.05.1998 09:00 UTC.

The success of the cruise was made possible by the exemplary performance of the crew. In work at deck and in maneuvering of the ship, the highest competence was displayed. Throughout the cruise there was outstanding teamwork and friendly companionship between the crew and the scientists. For this we sincerely thank Captain M. Kull and the entire crew.

The work was funded by the Deutsche Forschungsgemeinschaft (DFG) within the scope of the Sonderforschungsbereich 261 ("The South Atlantic in the Late Quaternary: Reconstruction of material budget and current systems") at Bremen University.

7 References

- Boebel, O., C. Schmid and W. Zenk (1997) Flow and recirculation of Antarctic Intermediate Water across the Rio Grande Rise. J. Geophys. Res., 102 (C9), 20,967-20,986.
- Boyce, R.E. (1968) Electrical resistivity of modern marine sediments from the Bering Sea. J. Geophys. Res. 73: 4759-4766.
- Boyce, R.E. (1976) Sound velocity density parameters of sediment and rock from DSDP Drill Sites 315 - 318 on the Line Islands Chain, Manihiki Plateau, and Tuamotu Ridge in the Pacific Ocean. In: S.O. Schlanger, E.D. Jackson et al., Init. Repts. DSDP 33: 695-728.
- Fischer, J. and M. Visbeck (1993) Deep velocity profiling with self-contained ADCPs. J. Atm. Ocean Techn., 10, 764-773.
- Haq, B.U. and A. Boersma (1978) Introduction to Marine Micropaleontology. pp. 376, Elsevier, New York - Oxford.
- Heimdal, B.R. (1993) Modern Coccolithophorids. In: C.R. JOMAS (ed.) Marine Phythoplankton - A Guide to Naked Flagellates and Coccolithophorids. pp 180, Academic Press Inc.; San Diego, New York.
- Hogg, N. and W. Zenk (1997) Long-period changes in the bottom water flowing through Vema Channel. J. Geophys. Res. 102 (C7) 15,639-15,646.
- Hogg, N., G. Siedler and W. Zenk (1998) Circulation and variability at the southern boundary of the Brazil Basin. J. Phys. Oceanogr. (in press)
- Hogg, N.G., P. Biscaye, W. Gardner and W.J. Schmitz, jr. (1982) On the transport and modification of Antarctic Bottom Water in the Vema Channel. J. Mar. Res., 40 (suppl.), 231–263.
- Hogg, N.G., W. Brechner Owens, G. Siedler and W. Zenk (1996) Circulation in the Deep Brazil Basin. In: Wefer, G., W.H. Berger, G. Siedler and D.J. Webb (Eds.): The South Atlantic: Present and Past Circulation. Springer Verlag, Berlin, Heidelberg, 249-260.
- Jungclaus, J.H. and M. Vanicek (1998) Frictionally modified flow in a deep ocean channel: Application to the Vema Channel. J. Geophys. Res. (in press)
- Ledbetter, M.T. (1984) Bottom current speed in the Vema Channel during the Late Quaternary based on particle size analyses. Mar. Geol., 58: 137-149.

- Ledbetter, M.T. (1986) Bottom-current pathways in the Argentine Basin revealed by mean silt particle size. Nature, 321: 423-425.
- McCave, I.N., P.F. Lonsdale, C.D. Hollister and W.D. Gardner (1980) Sediment transport over the Hattan and Gardar contourite drifts. J. Sed. Petrol., 50: 1049-1062.
- Mercier, H. and K. Speer (1997) Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone. J. Phys. Oceanogr. (accepted).
- Müller; G. and M. Gastner (1971) The "Karbonat-Bombe", a single device for the determination of the carbonate content in sediments, soils and other materials. Neues Jahrb. Min., Monatsh., 10: 466-469.
- Reid, J.L., W.D. Nowlin and W.C. Patzert (1977) On the characteristics and circulation in the southwestern Atlantic Ocean. J. Phys. Oceanogr., 7, 62–91.
- Schmieder, F. (1996) Susceptibility Stratigraphy. In: G. Wefer et al., M 16/1. Berichte, Fachbereich Geowissenschaften, Universität Bremen 79: 139-143.
- Schmieder, F., T. v. Dobeneck and U. Bleil (1998) Cycles, trends and events of Quaternary sedimentation in the oligotrophic subtropical South Atlantic Ocean derived from high-resolution magnetic chronostratigraphies (submitted).
- Schultheiss, P.J. and S.D. McPhail (1989) An automated p-wave logger for recording finescale compressional wave velocity structures in sediments. In: W. Ruddiman, M. Sarnthein et al., Proc. ODP, Sci. Results 108: 407-413.
- Schulz, H.D. et al. (1991) Bericht und erste Ergebnisse der METEOR-Fahrt M16/2. Berichte, Fachbereich Geowissenschaften, Universität Bremen 19: 149 p.
- Siedler, G. and W. Zenk (1992) WOCE Südatlantik 1991, Reise Nr. 15, 30. Dezember 1990 23. März 1991. METEOR-Berichte, Universität Hamburg, 92-1, 126 S.
- Siedler, G., T.J. Müller, R. Onken, M. Arhan, H. Mercier, B.A. King and P.M. Saunders (1996) The zonal WOCE sections in the South Atlantic. In: Wefer, G., W.H. Berger, G. Siedler and D.J. Webb (Eds.): The South Atlantic: Present and Past Circulation. Springer Verlag, Berlin, Heidelberg, 83-104.
- Smith, W.H.F. and D.T. Sandwell (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956-1962.
- Speer, K.G. and W. Zenk (1993) The flow of Antarctic Bottom Water into the Brazil Basin. J. Phys. Oceanogr. 23, 2667-2682.

- Speer, K.G., G. Siedler and L. Talley (1995) The Namib Col Current. Deep-Sea Res. I, 42 (11/12), 1933-1950.
- Spiess, V. (1993) Digitale Sedimentechographie Neue Wege zu einer hochauflösenden Akustostratigraphie, Berichte, Fachbereich Geowissenschaften, Universität Bremen, Nr. 35, Bremen, 1993
- Wefer, G. et al. (1991) Bericht und erste Ergebnisse über die METEOR-Fahrt M 16/1. Berichte, Fachbereich Geowissenschaften, Universität Bremen 18: 120 p.
- Zangenberg, N. and G. Siedler (1998) Path of the North Atlantic Deep Water in the Brazil Basin. J. Geophys. Res., 103 (C3), 5419-5428.
- Zenk, W. and N.G. Hogg (1996) Warming trend in Antarctic Bottom Water flowing into the Brazil Basin. Deep-Sea Res. I, 43 (9), 1461-1473.
- Zenk, W., G. Siedler, B. Lenz and N.G. Hogg (1998) Antarctic Bottom Water Flow through the Hunter Channel. J. Phys. Oceanogr. (submitted).
- Zenk, W., K.G. Speer and N.G. Hogg (1993) Bathymetry at the Vema Sill. Deep-Sea Res., 40 (9), 1925-1933.

8 Station List and Standard CTD Data

8.1 Station List

Table 18 Station list of RV METEOR Cruise M 41/3

Meteor No. 1998	GeoB No.	Date 1998	Equipment	Time Seafloor (UTC)	Positior Latitude	n Longitude	Water Depth (m)	Samples/ Sediment recovery (cm)	Remarks
Lower	Santos P	lateau, R	io Grande Fr	acture Zo	ne				
208	5101-1	20.04.	CTD/R₀	18:06	28°26.3′S	40°54.7′W	4388	21x10	CTD station for calibration, water samples from 4421, 4300, 4000, 3500, 3000, 2500, 2000, 1500, 1250, 1000, 750, 500, 300, 200, 150, 125, 100, 70, 50, 25, 10 dbar (δ^{13} C, δ^{18} O, PO ₄)
	5101-2		Ro II	20:01	28°26.5′S	40°54.7′W	4387	18x10 I	Station for calibration
Central Vema Channel									
209	5102-1	21.04.	Mooring	16:58	31°14.3′S	39°20.0′W	4602		Mooring No. V389-01 put out
210	5103-1		CTD/Ro	19:10	31°12.1 <i>′</i> S	39°23.7′W	4614	21x10	CTD station, water samples from 4659, 4610, 4500, 4250, 4000, 3750, 3500, 3250, 3000, 2600, 2300, 2000, 1500, 1000, 750,500, 300, 200, 100, 2x10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
	5103-2		Ro II	20:53	31°12.1′S	39°27.7′W	4612	18x10	Water samples from 200, 150, 4x100, 4x50, 4x20, 4x10 m depth (δ^{13} C, δ^{18} O, PO ₄ , dino- flagellates, coccolithophorids)
211	5104-1		CTD/Ro	23:26	31°12.1′S	39°21.0′W	4571		CTD station, tracer oceano- graphy (samples for He, CFC)
212	5105-1	22.04.	CTD/R₀	03:12	31°12.0′S	39°19.1′W	4487	21x10	CTD station, water samples from 4520, 4500, 4400, 4300, 4150, 4000, 3750, 3500, 3250, 3000, 2600, 2300, 2000, 1500, 1000, 750, 500, 300, 200, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
213	5106-1		CTD/Ro	07:15	31°12.0′S	39°16.0′W	4066		CTD station, tracer oceano- graphy (samples for He, CFC)
Northwe	estern Ve	ma Chan	nel						
214	5107-1	23.04.	CTD/Ro	20:33	26°54.0′S	33°55.0′W	3786		CTD station, tracer oceano- graphy (samples for He, CFC)
215	5108-1	24.04.	CTD/Ro	01:30	26°42.0′S	34°14.0′W	4784	21x10 I	CTD station, water samples from 4853, 4800, 4499, 4250, 3999, 3751, 3500, 3250, 3000, 2601, 2300, 2000, 1500, 1001, 749, 500, 300, 200, 100, 2x10, dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)

Meteor No. 1998	GeoB No.	Date 1998	Equipment	Time Seafloor (UTC)	Positic Latitude	n Longitude	Water Depth (m)	Samples/ Sediment recovery (cm)	Remarks
216	5109-1	24.04.	CTD/Ro	08:30	26°18.0′S	34°56.2′W	4353		CTD station, tracer oceano- graphy (samples for He, ³ H, CFC)
	5109-2		MUCI	11:25	26°18.0′S	34°56.5′W	4353		did not close, no core recovery
217	5110-1		CTD/Ro	18:05	25°54.1´S	35°39.0′W	4190		CTD station, tracer oceano- graphy (samples for He, ³ H, CEC)
	5110-2		Ro II	19:41	25°53.9´S	35°39.0′W	4203	18x10	Water samples from 200, 150 4x100, 4x50, 4x20, 4x10 m depth (δ^{13} C, δ^{18} O, PO ₄ , dino- flagellates, coccolithophorids)
217	5110-3	24.04.	MUC I	21:28	25°54.3´S	35°38.4′W	4184	16	Did not close all tubes, 3 big tubes filled: nannofossil ooze, dark brown
	5110-4 5110-5	25.05.	SL12 GKG	23:55 02:43	25°54.3´S 25°54.3´S	35°38.4′W 35°38.4′W	4188 4182	961 46	cc: Clay, greenish grey Nannofossil ooze, dark brown
<u>Mid-At</u>	lantic Rid	ge, Profil	le 24°S, Braz	<u>il Basin</u>					
218	5111-1	28.04.	CTD/R₀	11:54	23°48.9′S	19°59.8′W	5215	21x10	CTD station, water samples from 5285, 5202, 5000, 4750, 4502, 4252, 4002, 3602, 3002, 2602, 2302, 2001, 1501, 1001, 750, 503, 301, 201, 50, 11 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
219	5112-1	29.04.	CTD/Ro	11:22	23°49.6′S	16°16.3′W	3881	21x10	CTD station, water samples from 3890, 3750, 3600, 3400, 3200, 3000, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 800, 600, 500, 300, 200, 100, 50, 10 dbar (δ ¹³ C, δ ¹⁸ O, PO ₄ , He, ³ H, CFC)
	5112-2		Ro II	12:52	23°49.6′S	16°16.3′W	3879	17x10	Water samples from 200, 2x150, 3x120, 3x100, 3x50, 3x20, 3x10 m depth (δ^{13} C, δ^{18} O, PO ₄ , dinoflagellates, coccolithophorids)
	5112-3 5112-4		MUC I SL6	14:28 16:32	23°49.6´S 23°49.5´S	16°15.6′W 16°15.5′W	3844 3842	559	No recovery 38 cm sediment recovered from the bomb, cc: foram bearing nannofossil ooze, silty, light brown
	5112-5		GKG	18:50	23°49.5′S	16°15.5 <i>°</i> W	3841	27	foram-nannofossil ooze, light yellowish brown
220	5113-1	30.04.	CTD/Ro	04:13	23°40.3′S	15°00.0′W	3855	21x10 I	CTD station, water samples from 3880, 3800, 3600, 3400, 3200, 3000, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 800, 600, 500, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, CFC)
221	5114-1	30.04.	CTD/Ro	12:49	24°10.0′S	13°59.7′W	3182	21x101	CTD station, water samples from 3200, 3100, 3000, 2750, 2500, 2250, 2000, 1750, 1500, 1250, 1000, 800, 700, 600, 500, 400, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, CFC)

Meteo No. 1998	r GeoB No.	Date 1998	Equipment	Time Seafloor (UTC)	Positio Latitude	on Longitude	Water Depth (m)	Samples/ Sediment recovery (cm)	Remarks
222	5115-1	30.04.	SL12	15:19	24°08.6′S	14°02.6′W	3291	406	cc: Foram bearing nannofossil
	5115-2		MUC II	17:24	24°08.6′S	14°02.6′W	3291	25	6 big, 4 small tubes filled, foram-nannofossil ooze, light yellowish brown - brownish yellow
223	5116-1		MUC II	21:38	24°09.6´S	13°46.2′W	2556	28	6 big, 4 small tubes filled, foram-nannofossil ooze with pteropods, light yellowish brown - pale vellow
	5116-2		SL9	23:13	24°09.5´S	13°46.2′W	2550	540	cc: Foram bearing nannofossil ooze, sandy-silty, very pale brown
224	5117-1	01.05.	SL9	02:11	24°08.9′S	13°58.4′W	3040	139	Tube bent, cc: Foram bearing nannofossil ooze, clayey-silty, nale vellow
	5117-2		MUC II	04:07	24°08.8′S	13°58.4′W	3039	15	6 big, 4 small tubes filled, foram bearing nannofossil ooze
225	5118-1		CTD/R₀	09:12	24°10.8′S	13°23.0′W	2734	20x10 I	CTD station, water samples from 2780, 2730, 2500, 2250, 2000, 1750, 1500, 1250, 2x1000, 900, 800, 700, 600, 400, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
<u>Mid-At</u>	lantic Rid	lge, Profi	le 24°S, Ango	ola Basin					
226	5119-1	01.05.	CTD/Ro	17:14	24°10.0′S	12°18.0′W	3865	21x10	CTD station, water samples from 4000, 3900, 3600, 3400, 3200, 3000, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 800, 600, 500, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He,
	5119-2		Ro II	17:39	24°10.0′S	12°17.9′W	3732	18x10	Water saples from 200, 150, 4x100, 4x50, 4x20, 4x10 m depth (δ^{13} C, δ^{18} O, PO ₄ , dino- flagellates, coccolithophorids)
227	5120-1		MUC II	20:30	24°10.2′S	12°21.8′W	3844	21	6 big, 4 small tubes filled, foram-nannofossil ooze, light
	5120-2		SL6	22:45	24°10.2′S	12°21.8′W	3844	376	yeilowish brown cc: foram bearing nannofossil ooze, silty, light yellowish brown
228	5121-1	02.05.	SL6	03:03	24°11.0′S	12°01.3′W	3488	531	cc: foram bearing nannofossil ooze, silty-sandy, very pale
	5121-2		MUC II	05:02	24°11.0′S	12°01.3′W	3486	19	6 big, 4 small tubes filled, foram-nannofossil ooze, light yellowish brown
229	5122-1		CTD/Ro	12:16	24°10.2´S	11°08.1 <i>°</i> W	3741	20x10	CTD station, water samples from 3750, 3700, 3400, 3200, 3000, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 2x750, 500, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, CFC)
230	5123-1	02.05.	MUC II	15:37	24°09.9′S	11°20.3′W	3190		No recovery

Meteo No. 1998	r GeoB No.	Date 1998	Equipment	Time Seafloor (UTC)	Positio Latitude	on Longitude	Water Depth (m)	Samples/ Sediment recovery	Remarks
231	5124-1	03.05.	CTD/Ro	01:00	24°10.0′S	09°54.0′W	4320	20x10 I	CTD station, water samples from 4375, 4300, 4200, 4000, 3800, 3500, 3250, 3000, 2600, 2300, 2000, 1500, 1000, 750, 500, 300, 200, 100, 50, 10 dbar (δ ¹³ C, δ ¹⁸ O, PO ₄ , CFC)
Angol	a Basin, P	rotile 9°V	V						
232	5125-1	03.05.	CTD/Ro	08:20	24°10.0′S	9°00.0′W	4463	21x10	CTD station, water samples from 4520, 4300, 4000, 3500, 3000, 2500, 2000, 1500, 1250, 1000, 750, 500, 300, 200, 150, 125, 100, 75, 50, 25, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
233	5126-1	03.05.	CTD/R₀	20:15	22°23.9′S	9°00.0′W	4196	21x10	CTD station, water samples from 4230, 4100, 4000, 3745, 3500, 3252, 3000, 2600, 2300, 2000, 1600, 1300, 1000, 800, 600,400, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
234	5127-1	04.05.	CTD/Ro	05:04	21°11.9′S	8°59.9′W	3949	21x10 I	CTD station, water samples from 3860, 3800, 3600, 3400, 3200, 3000, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 800, 600, 500, 300, 200, 100, 50, 1 10 dbar(δ^{13} C, δ^{18} O, PO ₄ , CFC)
235	5128-1		CTD/Ro	14:14	19°59.9´S	9°00.1′W	3948	21x101	CTD station, water samples from 3950, 3900, 3700, 3400, 3200, 3000, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 750, 500, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , He, ³ H, CFC)
Mid-At	lantic Ride	ge, Profil	e 19°S, Ango	ola Basin					
236	5129-1	04.05.	CTD/Ro	22:59	19°00.0′S	9°46.2′W	3841	20x10	CTD station, water samples from 3857, 3750, 3600, 3400, 3200, 2750, 2500, 2250, 2000, 1600, 1300, 1000, 800, 600, 500, 300, 200, 100, 50, 10 dbar (δ^{13} C, δ^{18} O, PO ₄ , ³ H, CFC)
	5129-2	05.05.	CTD/Ro	01:03	19°00.0′S	9°46.2′W	3838	18x10 I	Water samples from 250, 230, 200, 170, 150, 120, 3x100, 3x75, $3x50$, $3x20$, $3x10$ depth $(\delta^{13}C, \delta^{18}O, PO_4$, dinoflagel- lates, coccolithophorids)
237	5130-1		MUCII	06:20	19°24.2´S	09°27.5′W	3166	18	6 big, 4 small tubes filled, foram-nannofossil ooze, grey-
	5130-2		SL12	08:48	19°24.2′S	09°27.6′W	3165	517	beige cc: nannofossil ooze, silty, very pale brown
238	5131-1		SL12	14:02	19°02.2′S	9°44.5′W	3886	216	Tube bent, cc: foram bearing nannofossil ooze, silty, very pale brown

Meteor No. 1998	GeoB No,	Date 1998	Equipment	Time Seafloor (UTC)	Positio Latitude	on Longitude	Water Depth (m)	Samples/ Sediment recovery (cm)	Remarks
239	5132-1	05.05.	SL6	16:39	19°07.5′S	09°43.1 W	3942	325	Core surface leaked, cc: nannofossil ooze, very
	5132-2		MUC II	18:49	19°07.5´S	09°43.2′W	3941	14	pale brown 6 big, 3 small tubes filled, foram-nannofossil ooze, very
	5132-3		SL6	21:07	19°07.5´S	09°43.1′W	3941	326	cc: nannofossil ooze, very pale brown
240	5133-1	06.05.	SL6	10:02	19°05.1´S	10°11.6′W	3661	503	cc: nannofossil ooze, clayey, very pale brown
	5133-2 5133-3		MUC I MUC II	12:08 14:21	19°05.1´S 19°05.2´S	10°11.5′W 10°11.5′W	3670 3660	 19	No recovery 6 big, 4 small tubes filled, foram-Nannofossil ooze, very pale brown
241	5134-1		MUC II	18:50	19°02.7′S	10°41.0′W	3411	19	6 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown
	5134-2	06.05.	SL6	20:51	19°02.7′S	10°41.0′W	3412	242	cc: foram-nannofossil ooze, silty, very pale brown
242	5135-1	07.05.	MUC II	05:21	19°26.2′S	11°03.8′W	3304	20	5 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown
	5135-2		SL6	07:17	19°26.1′S	11°03.8′W	3303	150	Tube bent, cc: foram-nanno-
	5135-3		SL3	09:15	19°26.0´S	11°03.8′W	3303	30	cc: foram-nannofossil ooze, silty, very pale brown
Mid-Atl	antic Rid	ge, Profil	e 19°S, Braz	il Basin					
243	5136-1	07.05.	SL6	18:59	19°22.2′S	12°40.2′W	3227	529	cc: foram-nannofossil ooze,
	5136-2		MUC II	20:52	19°22.2´S	12°40.2′W	3227	20	very pale brown 6 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown
	5136-3		CTD/Ro	22:51	19°21.9′S	12°42.7′W	3227	21x10	CTD station, water samples from 1500, 1250, 1000, 750, 200, 150, 3x100, 3x75, 3x50 $3x20$, $3x10$ dbar (δ^{13} C, δ^{18} O, PO ₄)
244	5137-1	08.05.	MUC II	04:57	19°17.5′S	13°27.2′W	3502	19	5 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown
	5137-2		SL12	07:00	19°17.5′S	13°27.2′W	3503	248	Tube bent, cc: foram-nanno- fossil ooze, silty, very pale brown
245	5138-1		SL6	15:12	19°11.3′S	14°39.3′W	3632	181	cc: foram-nannofossil ooze,
	5138-2		MUC II	17:15	19°11.4´S	14°39.3 <i>°</i> W	3631	21	6 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown
246	5139-1	09.05.	MUC II	01:29	19°00.8′S	15°50.0′W	3903	13	5 big, 2 small tubes filled, 2 big tubes partly leaked, foram- nannofossil ooze, very pale
	5139-2		SL6	03:36	19°00.8′S	15°50.0′W	3903	563	frown 60 cm sediment recovered from the bomb (mass sample), cc: nannofossil ooze, clayey, very pale brown

Meteor No. 1998	GeoB No.	Date 1998	Equipment	Time Seafloor (UTC)	Position Latitude	Water Longitude	Samples/ Depth (m)	Remarks Sediment recovery (cm)	
247	5140-1	09.05.	SL12	09:53	19°03.2′S	16°36.8′W	3660	391	Tube bent, cc: foram-nanno- fossil ooze, silty, very pale brown
	5140-2		SL6	12:08	19°03.1´S	16°36.9′W	3659	49	Tube bent, cc: foram-nanno- fossil ooze, silty, very pale brown
	5140-3		MUC II	14:06	19°03.1′S	16°36.8′W	3660	15	6 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown
248	5141-1		CTD/Ro	18:59	19°05.8′S	17°15.0′W	3460	21x10	CTD station, water samples from 1200, 900, 700, 500, 200 150, 3x120, 3x100, 3x50, 3x20, 3x10 dbar (δ^{13} C, δ^{18} O, PO ₄)
249	5142-1		SL6	21:05	19°05.4′S	17°08.7′W	3946	564	30 cm sediment recovered from the bomb and 25 cm sediment recovered from the core catcher, cc: nannofossil
	5142-2		MUC II	23:22	19°05.3′S	17°08.7′W	3946	18	5 big, 4 small tubes filled, foram-nannofossil ooze, very pale brown

CTD/Rosette water samples, 21 NISKIN bottles with 10 I Large box corer (Großkastengreifer) Multicorer with 8 big and 4 small tubes Multicorer with 6 big and 4 small tubes Rosette water samples, 18 NISKIN bottles with 10 I Gravity corer with 3, 6, 9 and 12 m pipe length, resp. CTD/Ro

GKG MUC I MUC II

Ro II

SL3/6/9/12

8.2 Standard CTD Data

Table 19 Distribution of hydrographic parameters on standard pressure levels from all CTD stations taken during cruise M 41/3. Columns represent pressure (p), *in situ* temperature (T), potential temperature (θ) and salinity (S) for each station. Considerations on data accuracies are given in the text (see Chapter 4.1)

Station 208	Profil 01
40° 54.59 W	28° 26.25 S
20.04.1998	UTC 16:44 4388 m

 Station
 210
 Profil
 02

 39°
 23.86 W
 31°
 11.84 S

 21.04.1998
 UTC
 17:42
 4614 m

р	T	θ	S	[р	Т	θ	S
dbar	°C	°C			dbar	°C	°C	
2.0	23.911	23.911	36.554	ľ	4.0	21.070	21.070	35.754
10.0	23.912	23.910	36.551		10.0	21.027	21.025	35.760
20.0	23.908	23.904	36.551		20.0	20.983	20.979	35.767
50.0	22.920	22.910	36.393		50.0	20.628	20.619	36.008
75.0	19.622	19.608	36.159		75.0	17.265	17.252	35.763
100.0	18.548	18.531	36.083		100.0	16.030	16.014	35.669
150.0	16.836	16.811	35.830		150.0	15.043	15.020	35.589
200.0	15.487	15.456	35.569		200.0	14.338	14.309	35.490
250.0	14.667	14.630	35.467		250.0	13.936	13.900	35.427
300.0	14.590	14.545	35.534	ļ	300.0	13.551	13.508	35.386
350.0	13.504	13.454	35.337		350.0	12.725	12.678	35.228
400.0	12.769	12.714	35.222		400.0	11.484	11.433	35.024
450.0	11.689	11.631	35.051		450.0	10.298	10.244	34.868
500.0	10.307	10.247	34.855		500.0	9.136	9.080	34.714
600.0	8.122	8.060	34.598		600.0	6.501	6.452	34.397
700.0	6.434	6.370	34.426		700.0	5.154	5.097	34.281
800.0	5.302	5.235	34.349		800.0	4.579	4.516	34.279
900.0	4.436	4.366	34.329		900.0	4.005	3.938	34.281
1000.0	3.830	3.756	34.338		1000.0	3.701	3.628	34.325
1500.0	3.014	2.906	34.628		1500.0	2.859	2.753	34.626
2000.0	3.528	3.368	34.922		2000.0	3.240	3.084	34.886
2500.0	3.202	2.998	34.944		2500.0	3.112	2.910	34.936
3000.0	2.878	2.630	34.928		3000.0	2.751	2.506	34.922
3500.0	1.186	0.927	34.769	1	3500.0	2.140	1.856	34.869
4000.0	0.504	0.214	34.698		4000.0	0.950	0.646	34.727
4430.0	0.364	0.032	34.682		4500.0	0.207	-0.128	34.675
					4666.0	0.220	-0.133	34 673

 Station 211
 Profil
 03

 39°
 21.02 W
 31°
 12.04 S

 21.04.1998
 UTC 21:59
 4574 m

Station 212 Profil 04 39° 18.90 W 31° 12.02 S 22.04.1998 UTC 01:42 4475 m

р	Т	θ	S
dbar	°C	°C	
2.0	21.183	21.183	35.768
10.0	21.177	21.175	35.764
20.0	21.056	21.052	35.757
50.0	20.703	20.694	36.009
75.0	17.446	17.433	35.753
100.0	16.247	16.231	35.708
150.0	15.126	15.103	35.597
200.0	14.533	14.503	35.521
250.0	13.975	13.939	35.441
300.0	13.476	13.433	35.370
350.0	12.539	12.492	35.198
400.0	11.342	11.292	35.010
450.0	10.324	10.270	34.867
500.0	9.292	9.235	34.720
600.0	6.939	6.882	34.459
700.0	5.461	5.402	34.314
800.0	4.550	4.487	34.262
900.0	4.086	4.018	34.292
1000.0	3.712	3.639	34.330
1500.0	2.877	2.770	34.616
2000.0	3.211	3.055	34.879
2500.0	3.096	2.895	34.938
3000.0	2.776	2.530	34.923
3500.0	2.188	1.903	34.874
4000.0	1.275	0.962	34.772
4500.0	0.205	-0.129	34.674
4630.0	0.217	-0.132	34.674

р Т		θ	S
dbar	°C	°C	
2.0	21.129	21.128	35.780
10.0	21.143	21.141	35.773
20.0	21.069	21.066	35.762
50.0	20.679	20.670	35.985
75.0	17.478	17.466	35.833
100.0	15.957	15.941	35.673
150.0	15.117	15.094	35.597
200.0	14.572	14.542	35.541
250.0	14.141	14.105	35.476
300.0	13.504	13.462	35.376
350.0	12.560	12.513	35.203
400.0	11.507	11.455	35.039
450.0	10.421	10.367	34.879
500.0	8.749	8.695	34.640
600.0	6.665	6.609	34.408
700.0	5.354	5.295	34.322
800.0	4.477	4.415	34.269
900.0	4.118	4.050	34.298
1000.0	3.673	3.600	34.322
1500.0	2.877	2.771	34.613
2000.0	3.165	3.010	34.862
2500.0	3.098	2.896	34.936
3000.0	2.777	2.531	34.919
3500.0	2.223	1.938	34.873
4000.0	1.378	1.062	34.781
4500.0	0.198	-0.137	34.672
4528.0	0.201	-0.136	34.674

 Station
 213
 Profil
 05

 39°
 16.02
 W
 31°
 12.03
 S

 22.04.1998
 UTC
 05:56
 4066
 m

Station 214 Profil 06 33° 54.96 W 26° 53.99 S 23.04.1998 UTC 19:16 3798 m

L

р	р Т		s
dbar	°C	°C	
2.0	21.412	21.412	35.772
10.0	21.419	21.417	35.764
20.0	21.233	21.229	35.754
50.0	20.857	20.848	35.957
75.0	17.798	17.785	35.786
100.0	16.425	16.409	35.754
150.0	15.241	15.218	35,623
200.0	14.635	14.605	35.548
250.0	14.030	13.993	35.437
300.0	13.494	13.451	35,367
350.0	12.650	12.602	35.212
400.0	11.802	11.750	35.083
450.0	10.464	10.410	34.889
500.0	9.098	9.042	34.703
600.0	6.836	6.779	34.449
700.0	5.380	5.322	34.326
800.0	4.577	4.515	34.288
900.0	4.169	4.101	34.316
1000.0	3.643	3.571	34.330
1500.0	3.109	3.000	34.664
2000.0	3.176	3.021	34.870
2500.0	3.093	2.892	34.934
3000.0	2.786	2.540	34.924
3500.0	2.288	2.001	34.882
4000.0	1.378	1.062	34.786
4096.0	1.247	0.925	34.771

р	Т	Θ	S
dbar	°C	°C	
2.0	23.566	23.565	36.051
10.0	23.569	23.567	36.046
20.0	23.565	23.560	36.040
50.0	22.402	22.392	36.006
75.0	20.422	20.407	36.249
100.0	18.757	18.739	36.061
150.0	16.584	16.559	35.784
200.0	15.157	15.126	35.553
250.0	14.602	14.564	35.556
300.0	14.257	14.213	35.515
350.0	13.643	13,593	35.406
400.0	12.363	12.310	35.172
450.0	11.192	11.136	34.979
500.0	10.308	10.248	34.865
600.0	7.704	7.643	34.560
700.0	6.150	6.088	34.409
800.0	4.847	4.782	34.324
900.0	4.099	4.031	34.325
1000.0	3.601	3.529	34.364
1500.0	2.872	2.765	34.687
2000.0	2.834	2.684	34.852
2500.0	2.903	2.705	34.927
3000.0	2.673	2.430	34.922
3500.0	2.262	1.976	34.886
3820.0	1.605	1.302	34.815

Table 19 continued

Station 215	Profil 0	7
34° 14.02 W	26° 41.97	s
23.04.1998	UTC 23:53	4783 m

р	Т	θ	S
2.0	23.629	23.629	36.075
10.0	23.632	23.630	36.076
20.0	23.633	23.628	36.075
50.0	22.641	22.631	36.237
75.0	20.524	20.510	36.221
100.0	19.303	19.285	36.155
150.0	17.544	17.518	35.864
200.0	16.135	16.103	35.663
250.0	14.920	14.882	35.490
300.0	14.927	14.881	35.588
350.0	13.621	13.571	35.327
400.0	12.716	12.661	35.199
450.0	11.631	11.573	35.038
500.0	10.656	10.594	34.914
600.0	8.254	8.191	34.615
700.0	6.374	6.310	34.430
800.0	5.005	4.940	34.326
900.0	4.210	4.141	34.329
1000.0	3.601	3.529	34.359
1500.0	2.910	2.803	34.685
2000.0	3.277	3.120	34.929
2500.0	3.002	2.802	34.939
3000.0	2.755	2.509	34.927
3500.0	2.362	2.073	34.892
4000.0	1.351	1.036	34.785
4500.0	0.505	0.161	34.694
4862.0	0.278	-0.098	34 676

Station 216	Profil 08	3
34° 56.16 W	26° 17.99	s
24.04.1998	UTC 07:06	4341 m

·····			
<u>P</u>	<u> </u>	θ	<u> </u>
2.0	24.313	24.312	36.004
10.0	24.327	24.325	36.016
20.0	24.323	24.319	36.013
50.0	22.340	22.330	36.384
75.0	20.277	20.263	36.264
100.0	19.045	19.027	36.091
150.0	17.066	17.041	35.784
200.0	16.044	16.012	35.632
250.0	14.994	14.956	35.493
300.0	14.322	14.277	35.428
350.0	13.415	13.366	35.280
400.0	12.337	12.283	35.118
450.0	11.551	11.493	35.013
500.0	10.404	10.344	34.862
600.0	7.900	7.838	34.570
700.0	5.961	5.899	34.387
800.0	4.701	4.638	34.319
900.0	4.169	4.100	34.337
1000.0	3.740	3.667	34.378
1500.0	3.192	3.082	34.727
2000.0	3.380	3.222	34.938
2500.0	3.051	2.850	34.941
3000.0	2.754	2.509	34.924
3500.0	2.291	2.004	34.885
4000.0	1,114	0.806	34.759
4388.0	0.303	-0.023	34.680

P

2.0 10.0

20.0

50.0

75.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

600.0

700.0

800.0

900.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4240.0

Station 217	Profil 09
35° 38.89 W	25° 53.88 S
24.04.1998 UT	°C 16:45 4215 m

T

25.065

24.988

24.951

24.597

21.502

20.511

18.227

16.792

15.415

14.396

13.369

12.432

11.223

10.217

8.166

6.361

5.083

4.157

3.811

3.699

3.950

2.950

2.286

1.636

0.794

0.415

16.759

15.376

14.351

13.320

12.378

11.166

10.157

8.103

6.297

5.017

4.089

3.737

3.583

3.783

2.751

2.051

1.366

0.494

0.102

n			28.04
	θ	S	F
	25.065	36.244	4.
	24.986	36.273	10
	24.947	36.352	20
	24.586	36.525	50
	21.487	36.470	75
	20.493	36.332	100
	18.201	35.978	150

35.747

35.529

35.379

35.269

35.125

34.963

34.834

34.609

34.441

34.364

34.350

34.401

34.727

34.952

34.937

34.892

34.820

34.728

34.689

Station 218 Profil 10 20° 00.03 W 23° 48.81 S 4.1998 UTC 10:14 5215 m

р	Т	θ	S
4.0	25.685	25.684	36.793
10.0	25.685	25.683	36.799
20.0	25.696	25.691	36.806
50.0	25.701	25.689	36.807
75.0	23.416	23.400	36.404
100.0	21.480	21.461	36.303
150.0	18.158	18.132	35.920
200.0	15.772	15.741	35.546
250.0	14.493	14.456	35.349
300.0	13.376	13.333	35.203
350.0	12.332	12.285	35.080
400.0	11.110	11.060	34.937
450.0	10.240	10.187	34.831
500.0	9.068	9.013	34.698
600.0	7.181	7.123	34.519
700.0	5.495	5.436	34.402
800.0	4.515	4.452	34.388
900.0	3.965	3.898	34.410
1000.0	3.628	3.555	34.470
1500.0	3.129	3.019	34.758
2000.0	3.138	2.984	34.916
2500.0	2.929	2.730	34.934
3000.0	2.700	2.455	34.920
3500.0	2.305	2.017	34.883
4000.0	1.634	1.310	34.811
4500.0	1.227	0.860	34.767
5000.0	0.927	0.512	34.734
5282.0	0.893	0.445	34.726

 Station 219
 Profil
 11

 16° 16.34 W
 23° 49.59 S
 29.4.1998
 UTC 10:07
 3874 m

Station 220	Profil 1	2
15° 00.02 W	23° 40.12	S
30.04.1998	UTC 02:58	3853 m

р	Т	θ	S
2.0	25.167	25.167	36.679
10.0	25.170	25.168	36.722
20.0	25.175	25.170	36.734
50.0	25.156	25.145	36.728
75.0	20.837	20.822	36.219
100.0	19.614	19.596	36.169
150.0	18.363	18.337	35.985
200.0	16.071	16.039	35.610
250.0	14.656	14.619	35.375
300.0	13.465	13.423	35.214
350.0	12.245	12.198	35.072
400.0	10.778	10.729	34.899
450.0	9.532	9.481	34.760
500.0	8.831	8.777	34.685
600.0	7.020	6.962	34.519
700.0	5.493	5.433	34.413
800.0	4.563	4.500	34.386
900.0	3.938	3.871	34.414
1000.0	3.527	3.455	34.459
1500.0	3.240	3.129	34.806
2000.0	3.217	3.061	34.938
2500.0	2.888	2.690	34.930
3000.0	2.604	2.362	34.907
3500.0	2.231	1.945	34.867
3900.0	1.937	1.616	34.838

р	Т	θ	S
4.0	24.989	24.988	36.728
10.0	24.992	24.990	36.739
20.0	24.993	24.989	36.757
50.0	24.989	24.978	36.756
75.0	21.944	21.929	36.318
100.0	21.158	21.139	36.302
150.0	19.166	19.139	36.128
200.0	17.149	17.116	35.780
250.0	15.009	14.971	35.427
300.0	13.424	13.382	35.205
350.0	12.463	12.416	35.093
400.0	11.484	11.433	34.976
450.0	10.188	10.135	34.830
500.0	8.732	8.677	34.675
600.0	7.171	7.113	34.541
700.0	5.778	5.717	34.420
800.0	4.571	4.508	34.370
900.0	4.014	3.947	34.393
1000.0	3.603	3.530	34.453
1500.0	3.088	2.979	34.759
2000.0	3.197	3.042	34.933
2500.0	2.766	2.571	34.906
3000.0	2.654	2.411	34.908
3500.0	2.446	2.155	34.887
3888.0	2.136	1.811	34.857

 Station
 221
 Profil
 13

 13°
 59.86 W
 24°
 09.95 S

 30.04.1998
 UTC
 11:46
 3171 m

Station 225	Profil 1	4
13° 23.07 W	24° 10.81	S
01.05.1998	UTC 08:17	2741 m

l P	Т	Θ	S
dbar	°C	°C	
4.0	24.725	24.724	36.740
10.0	24.728	24.725	36.740
20.0	24.730	24.726	36.739
50.0	24.723	24.712	36.736
75.0	22.406	22.391	36.307
100.0	20.866	20.847	36.233
150.0	19.339	19.312	36.153
200.0	16.756	16.724	35.719
250.0	14.673	14.636	35.377
300.0	13.215	13.173	35.180
350.0	11.684	11.638	34.997
400.0	10.849	10.800	34.899
450.0	9.994	9.941	34.805
500.0	8.744	8.690	34.671
600.0	6.995	6.938	34.506
700.0	5.632	5.572	34.411
800.0	4.790	4.726	34.398
900.0	4.191	4.122	34.424
1000.0	3.877	3.803	34.471
1500.0	3.178	3.067	34.741
2000.0	2.864	2.713	34.871
2500.0	2.739	2.544	34.897
3000.0	2.616	2.374	34.891
3200.0	2.608	2.345	34.892

р	T	8	s
dbar	°C	°C	
4.0	24.584	24.583	36.668
10.0	24.594	24.592	36.668
20.0	24.598	24.593	36.670
50.0	24.608	24.597	36.670
75.0	23.072	23.057	36.485
100.0	20.861	20.842	36.281
150.0	18.768	18.742	36.061
200.0	16.094	16.062	35.611
250.0	14.747	14.709	35.391
300.0	13.659	13.616	35.240
350.0	12.359	12.312	35.082
400.0	11.038	10.988	34.924
450.0	10.100	10.046	34.819
500.0	9.021	8.966	34.687
600.0	7.093	7.035	34.525
700.0	5.474	5.415	34.415
800.0	4.709	4.646	34.411
900.0	4.242	4.173	34.430
1000.0	3.909	3.834	34.463
1500.0	3.170	3.060	34.741
2000.0	2.870	2.720	34.889
2500.0	2.761	2.565	34.894
2774.0	2.713	2.491	34.895

•

Station 226	Profil 1	5
12° 18.11 W	24° 10.08	s
01.05.1998	UTC 15:57	3910 m

Station 229 Profil 16 11° 07.95 W 24° 10.25 S 02.05.1998 UTC 10:56 3737 m

	(23)		
<u>р</u>	<u> </u>	θ	S
4.0	24,432	24.431	36.637
10.0	24.432	24.430	36.637
20.0	24.429	24.425	36.640
50.0	24.403	24.392	36.644
75.0	21.050	21.036	36.194
100.0	19.853	19.834	36.189
150.0	17.491	17.465	35.810
200.0	15.543	15.512	35.511
250.0	14.514	14.476	35.350
300.0	13.638	13.595	35.231
350.0	12.554	12.507	35.099
400.0	11.287	11.236	34.952
450.0	10.094	10.041	34.815
500.0	8.905	8.851	34.688
600.0	7.077	7.019	34.517
700.0	5.416	5.357	34.407
800.0	4.728	4.665	34.403
900.0	4.127	4.058	34.434
1000.0	3.818	3.744	34.478
1500.0	3.144	3.034	34.738
2000.0	2.665	2.518	34.832
2500.0	2.511	2.321	34.874
3000.0	2.478	2.239	34.881
3500.0	2.489	2.197	34.880
4000.0	2.487	2.139	34.879
4006.0	2.487	2 139	34 880

р	Т	θ	S
2.0	24.273	24.273	36.540
10.0	24.288	24.286	36.538
20.0	24.293	24.288	36.537
50.0	24.270	24.260	36.534
75.0	23.752	23.737	36.372
100.0	19.784	19.766	35.925
150.0	16.207	16.183	35.570
200.0	14.233	14.203	35.299
250.0	13.320	13.285	35.183
300.0	12.411	12.371	35.082
350.0	11.293	11.249	34.952
400.0	10.116	10.068	34.813
450.0	9.446	9.395	34.739
500.0	8.616	8.563	34.652
600.0	6.754	6.698	34.483
700.0	5.162	5.105	34.372
800.0	4.331	4.270	34.403
900.0	3.893	3.826	34.437
1000.0	3.604	3.531	34.475
1500.0	3.168	3.058	34.758
2000.0	2.661	2.514	34.838
2500.0	2.511	2.321	34.874
3000.0	2.434	2.195	34.880
3500.0	2.400	2.110	34.880
3764.0	2.410	2.091	34.881

 Station 231
 Profil
 17

 09°
 53.92 W
 24° 09.96 S

 02.05.1998
 UTC 23:35
 4322 m

Station 232 Profil 18 09° 00.19 W 24° 09.91 S 03.05.1998 UTC 06:55 4462 m

р	Т	θ	S	р	Т	θ	S
4.0	23.874	23.873	36.566	2.0	23.715	23.715	36.423
10.0	23.873	23.871	36.570	10.0	23.726	23.724	36.424
20.0	23,871	23.867	36.574	20.0	23.735	23.731	36.427
50.0	23.876	23.865	36.573	50.0	23.662	23,652	36,425
75.0	22.069	22.054	36.189	75.0	20.946	20.932	35.978
100.0	19.430	19.412	36.037	100.0	19.052	19.034	35.929
150.0	17.559	17.534	35.791	150.0	17.125	17.100	35.733
200.0	15.069	15.038	35.436	200.0	15.455	15.424	35.488
250.0	13.735	13.699	35.242	250.0	14.211	14.174	35.309
300.0	12.954	12.913	35.145	300.0	12.922	12.881	35,138
350.0	11.884	11.838	35.025	350.0	11.959	11.913	35.031
400.0	11.118	11.068	34.935	400.0	10.862	10.813	34.902
450.0	9.964	9.912	34.801	450.0	9,573	9.522	34.758
500.0	8.367	8.315	34.633	500.0	8.912	8.857	34.676
600.0	6.375	6.320	34.455	600.0	7.260	7.201	34.544
700.0	5.312	5.254	34.391	700.0	5.364	5.306	34.392
800.0	4.365	4.304	34.380	800.0	4.445	4.383	34.373
900.0	3.894	3.827	34.420	900.0	4.127	4.058	34.427
1000.0	3.701	3.628	34.483	1000.0	3.786	3.712	34.474
1500.0	3.332	3.220	34.755	1500.0	3.470	3.356	34.765
2000.0	2.750	2.601	34.848	2000.0	2.737	2.589	34.835
2500.0	2.541	2.350	34.873	2500.0	2.510	2.319	34.873
3000.0	2.429	2.191	34.880	3000.0	2.399	2.161	34.878
3500.0	2.384	2.094	34.880	3500.0	2.361	2.072	34.884
4000.0	2.395	2.050	34.885	4000.0	2.393	2.047	34.887
4374.0	2.428	2.038	34.886	4500.0	2.438	2.033	34.887
				4522.0	2 441	2 033	34 887

Station 233	Profil 1	9
08° 59.96 W	22° 23.96	S
03.05.1998	UTC 19:00	4192 m

Station 234	Profil	20
09° 00.15 W	21° 12.1	0 S
04.05.1998 U	JTC 03:51	3941 m

	р	Т	θ	S
	2.0	24.105	24.105	36.497
	10.0	24.031	24.029	36.552
	20.0	24.018	24.013	36.580
	50.0	24.002	23.992	36.612
	75.0	23.018	23.003	36.397
	100.0	20.287	20.268	36.003
	150.0	17.878	17.853	35.818
	200.0	15.852	15.820	35.536
	250.0	14.185	14.148	35.302
	300.0	12.934	12.893	35.140
	350.0	11.835	11.790	35.018
	400.0	10.389	10.341	34.830
	450.0	9.211	9.161	34.721
	500.0	8.096	8.044	34.603
l	600.0	6.102	6.048	34.446
	700.0	4.872	4.816	34.395
	800.0	4.184	4.124	34.414
	900.0	3.867	3.801	34.450
	1000.0	3.646	3.573	34.512
l	1500.0	3.473	3.359	34.810
	2000.0	3.058	2.905	34.890
ļ	2500.0	2.589	2.397	34.878
l	3000.0	2.441	2.203	34.878
	3500.0	2.364	2.075	34.883
	4000.0	2.382	2.037	34.888
	4236.0	2.401	2.028	34.889

р	Т	θ	S
4.0	24.325	24.324	36.693
10.0	24.328	24.326	36,693
20.0	24.333	24.328	36.693
50.0	24.336	24.326	36.691
75.0	21.873	21.858	36.273
100.0	20.422	20.403	36.141
150.0	17.202	17.177	35.765
200.0	15.492	15.461	35.504
250.0	14.056	14.020	35.286
300.0	13.295	13.253	35.187
350.0	11.710	11.665	34.996
400.0	10.229	10.182	34.829
450.0	9.126	9.076	34.716
500.0	8.037	7.986	34.611
600.0	6.378	6.323	34.501
700.0	5.088	5.030	34.424
800.0	4.329	4.268	34.434
900.0	3.947	3.880	34.468
1000.0	3.736	3.663	34.519
1500.0	3.439	3.326	34.816
2000.0	3.036	2.883	34,898
2500.0	2.654	2.461	34.894
3000.0	2.441	2.203	34.882
3500.0	2.368	2.079	34.881
3876.0	2.381	2.050	34.882

 Station
 235
 Profil
 21

 09°
 00.09 W
 20°
 00.03 S

 04.05.1998
 UTC
 13:03
 3959 m

 Station 236
 Profil
 22

 09°
 46.23 W
 18°
 59.98 S

 04.05.1998
 UTC
 21:48
 3838 m

р	Т	Θ	S] [р	Т	Θ	S
2.0	23.967	23.967	36.466	1 Г	4.0	24.448	24.448	36.733
10.0	23.943	23.941	36.461		10.0	24.452	24.450	36.732
20.0	23.890	23.886	36.459		20.0	24.458	24.454	36.733
50.0	23.846	23.836	36,455		50.0	24.412	24.401	36.720
75.0	21.581	21.566	36.252		75.0	21.409	21.394	36.228
100.0	20.324	20.305	36,206		100.0	19.608	19.590	36.066
150.0	18.076	18.050	35.881		150.0	17.286	17.261	35.756
200.0	15.206	15.176	35.431		200.0	14.320	14.291	35.323
250.0	13.364	13.329	35.196		250.0	12.773	12.739	35.124
300.0	11.904	11.865	35.028		300.0	11.544	11.506	34.986
350.0	10.750	10.707	34.906		350.0	10.058	10.017	34.821
400.0	9.552	9.506	34.775		400.0	9.351	9.306	34.753
450.0	8.259	8.212	34.644		450.0	8.538	8,490	34.676
500.0	7.205	7.157	34,552		500.0	7.379	7.330	34.567
600.0	5.883	5.830	34.486		600.0	5.785	5.734	34.484
700.0	5.030	4.973	34,450		700.0	4.723	4.668	34.452
800.0	4.329	4.268	34.458		800.0	4.236	4.175	34.464
900.0	4.001	3.934	34.494		900.0	3.936	3.869	34.499
1000.0	3.840	3.765	34.541		1000.0	3.824	3.750	34.567
1500.0	3.642	3.527	34.824		1500.0	3.668	3,551	34.836
2000.0	3.092	2.938	34.903		2000.0	3.172	3.017	34.904
2500.0	2.643	2.450	34.891		2500.0	2.706	2.512	34.896
3000.0	2.454	2.216	34.884		3000.0	2.466	2.227	34.886
3500.0	2.388	2.099	34.883		3500.0	2.404	2.114	34.883
3962.0	2.396	2.055	34.889		3856.0	2.428	2.098	34.884

 Station 236
 Profil
 23

 09°
 46.20 W
 18°
 59.98 S

 05.05.1998
 UTC
 00:57
 3840 m

 Station
 243
 Profil
 24

 12°
 42.67 W
 19°
 22.00 S

 07.05.1998
 UTC
 22:22
 4536 m

р	T	θ	S
2.0	24.431	24.430	36.740
10.0	24.447	24.445	36.738
20.0	24.434	24.430	36.738
50.0	24.434	24.423	36.735
75.0	22.587	22.572	36.388
100.0	19.317	19.299	36.047
150.0	17.077	17.052	35.730
200.0	14.577	14.547	35.365
248.0	13.174	13.140	35.178

р	Т	θ	S
4.0	24.677	24.676	36.697
10.0	24.673	24.671	36.715
20.0	24.674	24.670	36.730
50.0	24.630	24.619	36.739
75.0	22.372	22.357	36.394
100.0	20.598	20.579	36.252
150.0	18.568	18.542	36.046
200.0	16.025	15.993	35.612
250.0	14.194	14.158	35.316
300.0	12.601	12.560	35.108
350.0	11.131	11.087	34.959
400.0	9.763	9.717	34.798
450.0	8.568	8.520	34.671
500.0	7.347	7.298	34.567
600.0	5.764	5.712	34.472
700.0	4.829	4.773	34.446
800.0	4.267	4.206	34.457
900.0	3.825	3.759	34.500
1000.0	3.700	3.626	34.548
1498.0	3.482	3.368	34.849

Station 248	Profil 25	5
17° 15.12 W	19° 05.75	S
09.05.1998	UTC 18:30	3453 m

p	Т	θ	S
2.0	25.829	25.829	36.947
10.0	25.567	25.564	36.971
20.0	25.541	25.536	36.993
50.0	25.523	25.512	37.005
75.0	23.108	23.093	36.537
100.0	21.152	21.132	36.413
150.0	19.127	19.100	36.152
200.0	16.246	16.214	35.637
250.0	14.339	14.302	35.352
300.0	12.869	12.828	35.167
350.0	11.445	11.401	35.000
400.0	10.030	9.983	34.841
450.0	8.928	8.879	34.728
500.0	7.941	7.890	34.636
600.0	6.127	6.073	34.497
700.0	4.823	4.767	34.431
800.0	4.213	4.153	34.437
900.0	3.847	3.781	34.467
1000.0	3.713	3.640	34.508
1500.0	3.651	3.535	34.847