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Abstract:

•

Variations in oxygen conditions below the permanent halocline influences the Baltic ecosystem
through a number ofmechanisms. Principle among these are fluctuations in the availability of benthic
habitat suitable for Baltic cod '(the top predator in the Baltic ccosystem). Variations in the volume ofdeep
oxygenated water influences dircctly the potential feeding habitat and volume of water suitable for
spa\\ning. Recent research has identified the importance of inflows of saline, oxygen rich North Sea
water into the Baltic sea on the recruitment success of Baltic cod. These inflows increase the volume of
water \\ith suitable oxygen and salinity conditions for the development and survival ofcod eggs (termed
spa\\ning volume). Increases in the "spa\ming volume" have occurred \\ith out the occurrence ofa major
inflow from the North Sea (e.g. 1958-59; 1966-67). Other candidate processes suggested to potentially
increase the "spa\ming volume" include variations in timing and volume ofterrestrial runoff, advection
ofwater from the Arkona Basin, convcctive overtuming ofthe \vater column due to surface cooling as
weil as \lind mixing do\m to the halocline. In order to examine the laUer three mechanisms, we have
performed model simulations utilizing the Baltic Sea Model (Lehmann, 1995). Three-dimensional fields
oftemperature and salinity were obtained from field studies in July 1995 and interpolated onto the model
grid. atmospheric forcing data was obtained from EUROPA-Model. The BaItic Sea model was then run
from the period from July 24 to December 31, 1995. To test the effects ofincreased \\ind energy and
surface cooling on oxygen conditions below the permanent halocline variations in the oxygen conditions
were examined utilizing the follo\\ing experiment conditions;
a) a reduction of SST by 5 oe over the entire simulation period thereby increasing vertical convection.
b) an increase of surface \\ind energy over the modeled period by 15%.
c) two high energy \\inter storms

The results ofthese simulations and the possible implications ofthe effects ofthese processcs on
the reproductive emironment of BaItic cod \\ill be discusscd.

"

Kc)' Words: BaItic Sea, cod sp3\ming volume, o:'\')'gcn, 3-D modeling, convcction, \\ind mixing.
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Introduction

The Baltic Sea is a large estuary with shallow connections to the ocean, principle

ofthese being the Danish Belt Sea. Fresh water inputs into the Baltic, on the order of

15000 m3.s·1 (Bergström & Carlsson, 1994), create a low salinity (- 7 %0) layer typically

of60-65 m in thickness (70 % total volume ofthe Baltic Sea). Below this layer exists a

10m termed the upper deep water pycnocline (25% ofthe Baltic volume; residence time

circa 3 years) which overlies the deep saline waters ofthe Baltic (10-13 0/00; 5% total

volume; residence time varies due to intermittent renew by inflows). Salinities and

stratification vary significantly horizontally with salinities being lower to the north and east

(e.g. Bothnian Bay) and higher to the west and south (e.g. Arkona Basin). A seasonal

thermocline develops in the spring due to surface heating and is maintained due to solar

inputs until the autumn. Between the summer thermocline and the halocline exists a cold

intermediate layer termed the "winter water". The summer thermocline deepens in the

autumn due to the combined effects of heat loss due to surface cooling and wind induced

entrainment eventually coalescing with the remnants ofthe previous winters cold

intermediate water resulting in a relatively homogeneous surface mixed layer down to the

halocline. (for more detailed descriptions see Kullenburg & Jacobsen, 1981; t & \Vulff,

1987).

The unique oceanographic conditions ofthe Baltic Sea, the resultant residence

times ofthe various layers coupled with the sedimentation oforganic materials from •

terrestrial sources and surface euphotic layers results in a build up in organic materials in

the deep layer (e.g. \Vulffet al., 1990). These organic materials are degraded by bacteria

utilizing oxygen in the process. This depletion ofoxygen in the deep layers results in

periods ofstagnation between inflows of oxygen rich saline waters from the North Sea

(e.g. Matthaus, 1995; MacKenzie et al., 1996), hence, influencing the spawning habitat

and egg survival ofBaltic cod, the top predator in the Baltic ecosystem (Nissling et al.,

1994; Weiland et al., 1994). Variations in the volume ofwater with oxygen and salinity

conditions favorable for the development and survival ofeod eggs ("reproductive
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•

volumen) coupled with estimates of spawning stock biomass have been utilized to explain

a significant amount ofthe variability in reci-uitment success ofBaltic cod ( e.g. Plikshs et

al., 1993).

The principle mechanism influencing the replenishment ofoxygen in the deep

Basins ofthe Baltic is the inflow ofsaline oxygen rich waters from the North Sea (e.g.

Matthaus & Franck 1992) However, the "reproductive volumen for Baltic cod can be

seen to vary considerably independent of inflow ofNorth Sea water (e.g. Fig, 1; and

MacKenzie et al., 1996). A number of processes have been suggested to influence oxygen

levels in the halocline and deep layers ofthe Baltic these include;

- nonnal advection, which entails the inflow ofwater masses originating from the Arkona

Basin into the Bomholm Basin (e.g. Stigebrandt 1987). A process which is not a

result ofextreme westerly winds which have been identified to generate major

inflows (e.g. Matthaus & Franck, 1992). .

- winter convection, which results in an improvement of the oxygen conditions by cooling

the surface water to the density maximum resulting in unstable vertical

stratification and overtum ofthe water column (Schulz et al. ,1992). This process

potentially forces aredistribution oftemperature and oxygen (to lesser extent also

salinity) by vertical convection. Oxygen saturation at the surface is a function of

temperature and salinity with concentrations in this region typically 100 %

saturation or more. Winter convection then potentially mixes oxygen saturated

surface water with unsaturated water masses oflesser density occurring at the

interface and in the halocline.

- vertical turbulent mixing, which results in the entrainment of oxygen from the surface

mixed layer into the halocline as weil as the erosion and expansion ofthe

halocline. This process is typically the result mechanical stirring induced by high

wind speeds (e.g. Stigebrandt & WuHr, 1987; Matthaus, 1995).

..



Typically, examination ofthe effects ofmixing processes such as convection and

wind mixing in the Baltic Sea have been examined synoptically during field programmes or

through the utilization of I-dimensional physical oceanographic models (e.g. Stigebrandt

1987; Matthaus 1990). These methods have proved extremely valuable in understanding

the dynamics ofthe Baltic Sea, however, in order to quantify the influences ofindividual

mixing events on the oxygen content in the region ofneutral buoyancy ofBaltic eod eggs

we have chosen to utilize a 3-D modeling approach. Employment ofthis modeling

technique will allow, through the variation ofinput values, a comparison ofthe effects of

specific simulated physical scenarios on the "spawning volume" ofBaltic cod. Our

approach is to first simulate, using existing environmental data, the break down ofthe

summer thermocline and transition to winter conditions. Secondly, we will change the

intensity ofthe environmental forcing during specific periods and compare the results to

those utilizing the actual environmental forcing to describe the influences of specific

mechanisms on the oxygen concentrations in the Bomholm Basin. The Bomholm Basin is

at present of particular interest as this is the primary present day spawning ground for the

Eastem Baltic Cod stock (e.g. MacKenzie et aL, 1996).

l\fethods:

For the investigation of convective and wind mixing on the oxygen conditions In

the halocline and deep layers ofthe Bomholm Basin the Baltic Sea model, a

three-dimensional eddy-resolving numerical model was employed in this study' (Lehmann,

1995). The model is based on the free surface Bryan-Cox-Semtner model (Killworth et aL,

1991) which is a special version ofthe Cox numerical ocean general circulation model

(Bryan, 1969; Semtner, 1974; Cox, 1984), adapted to include the free surface. Special

modifications necessary for modeling the Baltic Sea are described in Lehmann (1995).

Figure 2, ilIustrates a subcomponent ofthe model domain as weil as the reference

transect utilized to depict changes in oxygen, salinity and temperature due to manipulation

ofthe forcing parameters (i.e. wind velocity and temperature).

Initialization and Forcing:

,
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. Three-dimensional fields oftemperature and salinity were initialized utilizing a data

set representing the three-dimensional distribution of temperature and salinity for summer

conditions compiled during a hydrographie survey in thc Bornholm Basin in summer 1995.

Salinity, temperature and oxygen fields were created by interpolating field observations

ofthese variables onto the three-dimensional model grid employing objective analysis.

The simulation commenced on 24 July, 1995 and lasted to the end ofDecember. For time

1'=0 (24-July-1995) the velocity components were set to zero and the surface elevation

was taken from the restart file. Forcing was switched on and the model aIlowed to

equilibrate to the prescribed mass field over aperiod of a few days. Atmospheric forcing

for the simulations were obtained from the EUROPA-Model ofthe German Weather

Service (Deutscher Wetterdienst in Offenbach), namely 2-d wind field, dew point .

temperature (2m height), air temperature (2m) and precipitation. The heat budget was

calculated from incoming short and longwave radiation, outgoing longwave radiation and

from latent and sensible heat fluxes. Figure 3 iIIustrates the wind velocities, sea surface

temperature, air temperature and mixed layer incremental temperature over the period of

the simulation. In order to account for uncertainties in the calculated heat fluxes as weIl as

for the unknown heat content ofthe oceanic mixed layer, the surface ·temperature ofthe

ocean was relaxed to observed SST's taken from infrared sateIlite images. These images

were processed at the BSH (Bundesamt fuer Seeschiffahrt und Hydrograpie, Hamburg).

Infrared data from sateIlite overpasses for one week were combined in order to achieve a

nearly or almost cIoud free estimation of the Baltic Sea surface temperatures.•

Simulations:

The influence of potential mixing processes werc examined by modifying the

physical forcing parameters during December 1995 and comparison with the modeled

distributions utilizing "real" environmental forcing was performed. In order to do so data

from the simulation from July 24 to December 31, 1995 were extracted (6 hr times steps)

and these data served as a reference for foIlowing experiments;

:
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a) Convective mixing: for this simulation atmospheric heat inputs were switched off and

the SST's (from infrared satellite images) were reduced by 5 °C to initiate strong vertical

convection.

b) Increased total wind energy: For this experiment the wind forcing was increased by

15%, hence initiating stronger turbulent mixing.

c) Storm Effects: The intensity oftwo storm events occurring in December 1995 were

intensified by a factor of 1.8 resulting in storms with wind velocities of 18 m.s· l and >20

m.s· l respectively.

Results:

Simulation Utilizing Realistic Forcing

Figure 3 ilIustrates the weather evolution in December 1995. The maximum t wind speeds

(daily mean average ofin Bomholm Basin) reached 12 m/s during 2-12 and 23-28

December, 1995 with air temperatures during this period range between -6.0 to 3.0 °C,

with the lowest values found at the end ofDecember. The SST as obtained from satellite

estimates dropped from 7-8 °C to 3-4.5 °C at the end ofDecember producing a situation

was suitable for winter convection. However, the temperature required to generate ofthe

maximum density ofsurface water in the Bomholm Basin (S - 7 0/00 Temp max=2.5 °C)

was not reached.

•Evolution of the Salinity distribution:

Figure 4 ilIustrates the salinity distribution at the conclusion ofthe simulation utilizing

realist forcing. During the simulation period surface salinities in the Arkona Basin ranged

from 8-7.5 %0. In the western part ofthe basin salinity increased from 9 %0 at 15 m to 13

0/00 at the bottom. In the Bomholm Gat the salinity was vertically homogeneous down to

30 m, this was also true for the Bomholm Basin. The permanent halocline was separated

by an intrusion of a relatively warm water mass (11 Oe) at a depth ofabout 55m. So the

permanent halocline was bifurcated in the westem part ofthe Bomholm Basin, one branch
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8-10 roo (40-50 rn) and the other 11-16 roo (60-75 rn). At the bottorn ofthe Bornholm

Basin the salinity reached 17 %0.

Evolution of the Temperature distribution:

Figure 5 illustrates the temperature distribution at the conclusion ofthe simulation utilizing

realist forcing The surface temperatures during the simulation ranged from 4.5 to 5 oe.
The temperature was almost vertically homogeneous down to the permanent halocline, or

it is better to say down to the 8.5 0/00 isohaline. A thermocline separated BaItic Sea water

masses from higher saline waters. HIS vertical position is found in the western Arkona

Basin at 15 rn, in the Bomholm Gat at 35 m and in the Bomholm Basin at 40-45 m. In the

Bornholm Basin, below the thermocline, at a depth between 50-70 rn a region of 11 °C

water was observed C). This homogeneous temperature layer was separated from the

relatively cold bottom layer (5 and 6°C) at 75 rn by a sharp second thermocline (lower

branch ofthe permanent halocline).

Evolution of the Oxygen distribution:

Figure 6 illustrates the oxygen distribution at the conclusion ofthe simulation utilizing

realist forcing The vertical oxygen distribution resembled strongly the temperatlire field.

The gradient zones in oxygen were connected to the thermoclines. Within the intermediate

layer ofhomogenous temperature, a tongue ofhigher oxygen values (6.-6.5 mIlI) was

found. Similar oxygen values were found in the lower layer ofthe Arkona Basin

suggesting that this water mass was advected fram the Arkona Basin.

Note: Oxygen values are somewhat artificial as uptake rates as weIl as initial conditions

require further examination. However, as the goal is to describe potential changes in O2

relative to entrainment ofoxygen rich water these can be utilized as relative.

Convection Simulation:

In this simulation there was only a change in the surface boundary condition for

temperature, hence the no strang deviations in the vertical salinity distribution werc

observed. Figure 7 illustrates thc potential change in oxygen content duc to convective
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mixing relative to the simulation utilizing realistic forcing. Variations in temperature

occurred in the surface mixed layer as expected however no significant changes were

found in or below the permanent halocline. Strong cooling at the surface provided an

increased heat loss from the ocean, but water masses which were taking part in advection

were not influenced by vertical convection hence changes in the oxygen distribution were

also confined to the mixed layer.

Simulation of Increased Mean \Vind Stress:

The situation for this set ofexperiments is the same as in the convection

experiment, with one exception, namely there is a slight increase in oxygen (0.2 ml/l)

within the permanent halocline to a depth of 60 meters. Figure 8 illustrates the change in

oxygen content due to increased wind energy relative to the simulation utilizing realistic

forcing. The increased oxygen content observed in this experiment is the result of a

change in the advection pattern due to the increased wind forcing which has two effects.

The distribution ofsalinity observed in Figure 9 supports the hypothesis ofadvection from

the Arkona Basin into the Bomholm Basin. The first, due to the increased wind stirring

the mixed layer depth is slightly increased, which means water masses which were being

advected were modified, and second, the increased wind forcing led to an increased

circulation and transport from the Arkona Basin.

Simulation of Storm ElTects:

The effects ofthe two storms (18 m.s· l and >20m.s·l ) were observed in this simulation to

alter the oxygen content below the permanent halocline to a depth ofgreater then 80

meters. Figure 10 and 11 iIIustrates the change in oxygen content due to the first and

second simulated storm events respectively. The first storm event was observed to

increase oxygen content by up to 0.5 mtr l with the second event further increasing levels

to 2m1.r l relative to the simulation utilizing realistic forcing. It is apparent from these

simulations that the increased wind energy was sufficient to influence the oxygen

conditions in halocline and in fact into the deep layers ofthe Bornholm Basin.
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Summary:

The utility of3-D physical oeeangraphie models for eharaeterizing variations in the

physieal environment whieh potentially influence biological proeesses in the marine and

coastal environment has c1early been presented in the Baltie as in other systems (e.g. St.

John et al., 1992). 3-D model simulations allow a characterization ofthe environment and

the testing ofspecific physical hypotheses impossible using synoptie or I-D models as 3-D

models allow estimates ofpotential fluxes unobtainable with other approaches. However,

care must be utilized in the interpretation ofresults (i.e. fluxes and transport rates)

obtained by this method. Characterization ofthe physical processes involved may be quite

variable due to the variations in panlmterization of specific proeesses (i.e. entrainment

rates, the effects oftopographic steering, efficiency oftransfer ofenergy from thc

atmosphere to the ocean surface, sub-grid scale processes). However, taking into aceount

that aetual rates may vary these models can be utilized as a diagnostie tool to create an

index ofimportance and variability ofeffects of specifie forcing. Hence, identifying areas

for future more detailed examination as weIl as providing an index to compare potential

variations in biological regimes or proeesses.

In this study we have c1early identified thc potential importance of surfacc \vind

stress on mixing at and below thc haloclinc in thc Bornholm Basin as presented by

Matthaus (1990). Historie variations in the eod "spawning" volume may in part be the

result ofwind mixing as weIl as resultant coastal upwelling and downwelling(e.g.

Matthaus, 1990) and thc breaking of internal waves in open water (Krauss, 1981)in

regions where the halocline approaches the bottom(e.g. Schaffer, 1979). The effects of

winter convective mixing examined here on oxygen levels in the halocline seems however

to be limited although any proeess reducing the stratification intensity will allow a more

efficient transfer ofwind energy to depth. Hence, warm winters have the potential to have

a reduced influence ofwind mixing on oxygen levels in the haloc1ine as well as increased

biological rates and oxygen utilization'(e.g. MaeKenzie et al., 1996)

A key process identified during this exercise requiring future examination is the

influence of advection of saline oxygen rich water into the Bornholm Basin from the

Arkona Basin. This proeess has thc potential to dramatically influencc thc salinity and
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oxygen conditions influencing Baltic cod spawning success. Future research will quantify

the effects ofthese processes (winter wind mixing and advection) on the spawning volume

ofBaltic cod. The end goalofthis effort being to develop an index ofintra annual

variability ofthe effects ofthese processes on the spawning environment ofBaltic cod.
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Figure Captions:

Figure 1: Time series ofthe changes in reproductive volume (km3
) in May and the

intensity ofinflow (Qt) from the North Sea in the previous winter. Data kindly provided

by M. Plikshs and W. Matthaus respectively.

Figure 2: Contour plot ofa sub component the Baltic Sea model domain incIuding the

Bornholm Basin, Bornholm Gat illustrating the depth distribution and orientation ofthe

transect chosen to represent simulated conditions in the Bomholm Basin.

3) Daily time series ofwind speed (m.s-l), air temperature (above the sea surface), sea

surface temperature (as obtained from sateIlite imagery) as weIl as temperature ofthe

mixed layer in the Bomholm Basin in December 1995.

4) Contour plot of salinity conditions (%o)on December 31, 1995 along the transect

(shown in figure 2) as simulated by the Baltic Sea model.

5) Contour plot oftemperature COC) conditions on December 31, 1995 along the transect

(shown in figure 2) as simulated by the Baltic Sea model.

6) Contour plot ofrelative oxyg~n distribution (mI.r1
) on December 31, 1995 along the

transect (shown in figure 2) as simulated by the Baltic Sea model.

Note: these are not intended to represent the actual conditions in the Bornholm Basin due

to deviations between modeled and actual in oxygen utilization rates. These are intended

as values to be utilized to examine the relative change in O2 content due to physical

forcing.

7) Convection Experiment: Contour plot ofchanges in relative oxygen content (mI.r1
) due

to a simulated 5 °C decrease in surface temperature over the period from 1st to 31,

December 1995, a]ong the transect (shown in figure 2) as simulated by the Baltic Sea



13

model. Delta 02 is calculated as the change in oxygen content between the simulation

utilizing realistic conditions for the Bomholm Basin and the experimental condition.

8) Increased Wind Stress Simulation: Contour plot ofchanges in relative oxygen content

(ml.r l
) due to a simulated 15% increase ofwind energy over the period from 1st to 31,

December 1995, along the transect (shown in figure 2) as simulated by the Baltic Sea

model. Delta 02 is calculated as the change in oxygen content between the simulation

utilizing realistic conditions for the Bomholm Basin and the experimental condition.

9) Increased \Vind Stress Simulation: Contour plot ofchanges in salinity (o/oo)due to a

simulated 15% increase ofwind energy over the period from 1st to 31, December 1995,

along the transect (shown in figure 2) as simulated by the Baltic Sea ~odel. Delta

salinity is calculated as the change in salinity (0/00) between the simulation utilizing realistic

conditions for the Bomholm Basin and the experimental condition..

10) Storm Experiment 1: Contour plot ofchanges in relative oxygen content (mt.r l
) due

to a simulated 1.8 % increase ofwind energy over the period from 3rd to 6th, December

1995, along the transect (shown in figure 2) as simulated by the Baltic Sea model. Peak

wind speed in experimental condition is 18 m.s·l Delta O2 is calculated as the change in

oxygen content between the simulation utilizing realistic conditions for the Bomholm

Basin immediately after the storm and the experimental condition immediately.after the

storm.

11) Storm Experiment 1 : Contour plot ofchanges in relative oxygen content (ml.r l
) due

to a simulated 1.8 % increase ofwind energy over the period from 3rd to 6th, December

1995, along the transect (shown in figure 2) as simulated by the Baltic Sea model. Peak

wind speed in experimental condition is in excess of20 m.s·l
• Delta O2 is calculated as the

change in oxygen content between the simulation utilizing realistic conditions for the

Bomholm Basin immediately after the storm and the experimental condition immediately

after the storm.

.'
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Simulation with Increased Wind Stress
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Simulation with Increased Wind Stress
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Storm Simulation 1 (18 m.s-1)
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