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ABSTRACT

Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship
(VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The
largest uncertainties in linear trend estimates are found in relatively poorly sampled regions like the
high-latitude North Atlantic and North Pacific as well as the Southern Ocean, where trends can locally show
opposite signs when computed from the regularly sampled and undersampled data. Spatial patterns of
shorter-period interannual variability, quantified through the EOF analysis, also show remarkable differ-
ences between the regularly sampled and undersampled flux datasets in the Labrador Sea and northwest
Pacific. In particular, it is shown that in the Labrador Sea region, in contrast to regularly sampled NCEP-
NCAR reanalysis fluxes, VOS-like sampled NCEP-NCAR reanalysis fluxes neither show significant inter-
annual variability nor significant trends. These regions, although quite localized covering small parts of the
globe, play a crucial role for the coupled atmosphere-ocean system. In the Labrador Sea, for instance,
interannual and decadal-scale changes of the surface net heat fluxes are known to affect oceanic convection
and, thus, the meridional overturning circulation of the Atlantic Ocean. From a discussion of current
atmospheric data assimilation systems it is argued that in poorly sampled regions reanalysis products are
superior to VOS-based products for studying interannual and interdecadal variations of atmosphere-ocean
interaction. In well-sampled regions, on the other hand, conclusions about surface heat flux variations are
relatively insensitive to the choice of the flux products used (VOS versus reanalysis data). The results are
confirmed for two different datasets, that is, ECMWF 40-yr Re-Analysis (ERA-40) data and seasonal
integrations with a recent version of the ECMWF model in which no actual data were assimilated.

1. Introduction

Understanding and predicting climate variations
from interannual to interdecadal scales is one of the
main current challenges in climate research. On the one
hand, Bjerknes (1964) showed that atmospheric varia-
tions are capable of altering the ocean circulation. On
the other hand, there is also evidence suggesting that
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SST anomalies influence the atmospheric circulation
(e.g., Rodwell et al. 1999), although this topic is more
controversial, at least in the extratropics. The possibil-
ity of two-way atmosphere-ocean interaction is very
attractive because it implies that climate variations may
to some extent be predictable. In this context surface
heat fluxes play a crucial role, since it is through the
fluxes at the sea surface that the atmosphere and ocean
communicate.

There are different ways to study the variability of
air-sea interaction. Coupled models have been widely
used since, among others, they can provide relatively
long time series of the characteristics of the coupled
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climate system without any gaps. Recently, the avail-
ability of reanalysis products (Kalnay et al. 1996; Kistler
et al. 2001; Uppala et al. 2005) has also attracted wide-
spread interest. Reanalyses are being carried out using
sophisticated atmospheric data assimilation systems,
which combine model estimates of the state of the at-
mosphere (so-called first guesses) with observational
data in some optimal way (e.g., Kalnay 2003). The ex-
tent to which reanalysis data are constrained by obser-
vations depends on the parameter being considered.
For example, geopotential height fields are largely de-
termined by the observations. On the other hand, sur-
face fluxes are determined from short-range forecasts
and, hence, are more model dependent. Therefore, ob-
servational data remain crucial for the validation of
both coupled and uncoupled model runs as well as re-
analysis products. Surface fluxes from reanalyses data
were extensively used for the model experiments tar-
geted on the diagnostics of climate variability of the
ocean circulation (Eden and Willebrand 2001; Eden
and Jung 2001; Gulev et al. 2003; Beismann and Barnier
2004).

In many studies, based on voluntary observing ship
(VOS) data, analysis of climate signals associated with
the ocean was quantified in terms of SST anomalies
(e.g., Deser and Blackmon 1993; Kushnir 1994). Diag-
nosis of the long-term variability using surface sea—air
fluxes may be even more informative for the descrip-
tion of changes at the sea-air interface. However, any
attempts to investigate climate variability in the VOS-
derived surface ocean-atmosphere fluxes (e.g., Cayan
1992a,b; Gulev 1995; Iwasaka and Wallace 1995; Josey
and Marsh 2005) are always influenced by uncertainties
inherent to long sea—air flux time series, many of which
are of time-dependent nature. Differences in results of
ocean model experiments driven by reanalyses and
VOS surface flux anomalies (e.g., Hikkinen 1999; Eden
and Willebrand 2001; Gulev et al. 2003) may originate
not only from differences in the model formulation
used, but also from the differences in the forcing func-
tions. Uncertainties associated with bulk parameteriza-
tions are not time dependent and the use of different
turbulent or radiation schemes usually has rather little
impact on the qualitative spatial structure of major vari-
ability patterns of surface heat flux fields. On the other
hand, the uncertainties associated with variable correc-
tions and uncertainties associated with inhomogeneous
sampling may influence estimates of climate variability.
For instance, the time dependence of the ratio between
anemometer measurements and Beaufort estimates or
growing ship size may result in artificial secular tenden-
cies in the wind speed and therefore in surface turbu-
lent fluxes (e.g., Peterson and Hasse 1987; Cardone et
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al. 1990; Lindau et al. 1990; Lindau 2003). Sampling
inhomogeneity, whose impact on climatological flux es-
timates was addressed in Gulev et al. (2007, hereafter
Part I), may also be a crucial factor when air-sea flux
variability is investigated using VOS data. This issue
will be investigated in this study.

In Part I it has been shown that in some areas—for
example, the Labrador Sea, the northern North Atlan-
tic, and the Southern Ocean—the relatively poor sam-
pling in VOS products is a significant source of uncer-
tainties of monthly mean surface flux estimates (Gulev
et al. 2007). Uncertainty estimates were based on the
subsampling of 6-hourly surface variables from the Na-
tional Centers for Environmental Prediction—National
Center for Atmospheric Research (NCEP-NCAR) re-
analysis and the fluxes computed from these variables
using bulk formulas. For this purpose for each month
during the period 1948-2002 and for every grid box the
actual sampling was determined from International
Comprehensive Ocean—-Atmosphere Data Set
(ICOADS) archives (Worley et al. 2005). Then,
monthly mean values of surface variables and fluxes
have been derived from 6-hourly NCEP-NCAR data
using the actual VOS-like sampling (the same number
of samples was used at exactly the same times when
VOS observations were available) and random VOS-
like sampling (the same number of samples as available
from VOS data was used, but the times were picked
randomly within the particular month). Hereafter, we
shall use the abbreviation FULL for the full 6-hourly
NCEP-NCAR surface fluxes (our “truth”), REAL for
the actual VOS-like sampling product, and RAND for
the random VOS-like sampling fields. Additionally we
estimate uncertainties associated with the spatial inter-
polation of fluxes into fully unsampled grid cells.

In Part I it was found that the uncertainty of monthly
mean fluxes based on REAL was generally larger than
that of RAND. This can largely be explained by the fact
that VOS observations are usually taken for limited
periods of time only (e.g., the passage of one ship
through one grid box), which leads to the availability of
relatively fewer independent observations in REAL
compared to RAND. For the period 1992-2001 the
same sampling procedure was applied to two additional
datasets, that is, European Centre for Medium-Range
Weather Forecasts (ECMWF) 40-yr Re-Analysis
(ERA-40) data and seasonal integration with the
ECMWF model (using the same resolution as for ERA-
40) in which no data were assimilated (ECF, hereafter).
Conclusions from these computations were consistent
with those drawn from the NCEP-NCAR-based flux
fields. Spatial patterns of sampling uncertainties quali-
tatively agree well in all three products, but may exhibit
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F1G. 1. Time variability of the January random (dashed line)
and total (solid line) sampling errors in the latent heat flux and the
number of VOS observations for one 2° box in the Labrador Sea
(filled circles stand for the existence of at least one observation
per month; open circles stand for the absence of samples).

quantitative differences, due to somewhat different
magnitudes of intramonthly synoptic variability in dif-
ferent NWP products.

Figure 2 of Part I shows a striking example of the
time-dependent nature of sampling uncertainties in sur-
face fluxes [see also Chang (2005) for a discussion of
mean sea level pressure from ICOADS]. First, time-
dependent sampling uncertainties arise from changes in
sampling density. Second, for some grid cells there are
periods when observations were available (they are in-
fluenced by sampling errors), and there are periods for
which there were no observations at all and the values
were provided by spatial interpolation (they are influ-
enced by interpolation or extrapolation errors). Figure
1 shows the time series for January of random [84(Q,)]
and total [x,(Q,)] sampling errors (see Part I for defi-
nitions) for latent heat fluxes along with the number of
VOS observations for the 2° box centered at 59°N, 53°E
in a poorly sampled area of the Labrador Sea. Clearly,
there is strong interannual variability in the magnitude
of both x(Q,) and 8,(Q,) and this magnitude is com-
parable to the magnitude of interannual variability of
the fluxes themselves. Also, there are periods (e.g.,
from the mid-1960s to mid-1970s) during which both
random and total sampling errors originate from the
inadequate sampling and there are other periods (e.g.,
during the 1990s) characterized by the absence of ob-
servations, when sampling uncertainty results from the
spatial interpolation and extrapolation procedures.

By using the method outlined in Part I, here we in-
vestigate how the temporally and spatially inhomoge-
neous sampling of VOS data affects estimates of cli-
mate variability of surface heat fluxes. As will become
clear, the results of this study have important implica-
tions for future studies on the nature of climate vari-
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ability of surface heat fluxes. The paper is organized as
follows. In the next two sections the results are pre-
sented. We start with a discussion of the sensitivity of
secular changes (or trends) to sampling and continue
with the analysis of sampling impact on interannual
sea—air flux variability. Finally, the results are summa-
rized and discussed.

2. Impact of sampling uncertainties on secular
tendencies in air-sea fluxes

In this section we analyze the influence of sampling
on linear trends of surface heat fluxes. To this end, first
we estimated linear trends in different sea—air flux com-
ponents from the regularly sampled (FULL) and un-
dersampled (REAL and RAND) time series for the
period from 1948 to 2002. Trends in variables taken
from NCEP-NCAR reanalyses or in products derived
from reanalyses variables are known to be influenced
by the inhomogeneities of data assimilation input, al-
though the data assimilation system itself has been fro-
zen during the production period. Time-dependent un-
certainties originate from the sharp increase of the as-
similated information with the availability of satellite
data and resulting strong temporal inhomogeneities of
the assimilated information, especially in the Southern
Hemisphere. White (2000) and Sterl (2004) found
strong temporal inconsistencies of reanalyses of NCEP
and ECMWF, associated with inhomogeneity of data
assimilation input. Bengtsson et al. (2004b) showed that
changes in data assimilation input can also affect trends
in global quantities, such as global mean temperature,
integrated water vapor, and kinetic energy. However,
in this study, it is not our intention to make new infer-
ences about secular changes in the fluxes computed
from the reanalysis variables. Rather, the aim is to
quantify the uncertainties inherent in estimates of secu-
lar changes due to sampling inhomogeneity.

Figure 2 shows estimates of linear trends together
with their statistical significance according to a Stu-
dent’s  test for the winter [January-March (JFM)] and
summer [July-September (JAS)] seasons in the sen-
sible plus latent turbulent fluxes Q.. Seasonal time
series were derived from the monthly values of all three
products (FULL, RAND, and REAL). Trends in the
heat fluxes derived from the regularly sampled time
series (Fig. 2a) are significantly positive in the subpolar
latitudes of the North Atlantic, the northeast subtropi-
cal and midlatitudinal Pacific, as well as in tropical and
subtropical areas of the Southern Hemisphere, with the
highest values of about 3-6 W m ™2 per decade. Signifi-
cantly negative trends are observed in the North At-
lantic subtropics, particularly over the Gulf Stream
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FIG. 2. Linear trends (W m ™2 per decade) in the sensible plus latent heat flux, estimated from (a), (b) the FULL product and (c), (d)
the REAL product along with (e), (f) the significance of the difference between the trends for (a), (c), (e) boreal winter (JFM) and (b),
(d), (f) summer boreal (JAS). In (a)-(d) only trends significant at 95% level (z test) are shown. In (e), (f) only differences significant

at the 90% and 95% level are shown.

area, in the northeast Pacific, and in the Southern
Ocean, where they can be largely attributed to the
changes in data assimilation input during the last two
decades. During the July-September period (Fig. 2b)
the situation in the Southern Hemisphere is quite com-
parable to that for boreal winter. Late summertime
trends are quite different in the Northern Hemisphere,
however, with weakly positive significant changes being
found in the subpolar latitudes of the North Atlantic;
the pattern of the strong positive trends in the north-
west Pacific is absent.

Comparison of the spatial structure of the estimated
trend patterns in Figs. 2a,b with those derived from the
fluxes computed from the VOS-like sampled individual
variables (Figs. 2c,d), despite general similarity, espe-
cially in the tropical regions, show local differences,
first of all in the subpolar North Atlantic and in the
Southern Ocean. In the Labrador Sea, for example, the
fluxes computed from the regularly sampled variables
give positive winter trends of up to 5 W m~? per de-
cade. However, when subsampled variables are used
the trends become significantly negative and amount to

—3-4 W m™? per decade. Remarkably different trend
patterns are observed in summer in the marginal seas of
the northwest Pacific, where regularly sampled time se-
ries show significantly positive trends and VOS-like
sampled time series show no indication of any secular
changes. Locally large differences in the trend esti-
mates are also observed in the Southern Ocean, where
the continuous area of negative trends disappears, be-
ing largely influenced by the interpolation in fully un-
sampled grid cells.

Figures 2e,f show the regions where the differences
between the trend estimates obtained from the regu-
larly sampled and VOS-like sampled time series
(REAL) are significant at the 90% and 95% signifi-
cance level. The strongest differences are observed in
the subpolar latitudes of the Northern Hemisphere and
in the Southern Ocean, reflecting a substantial influ-
ence of sampling on the estimated trends in poorly ob-
served regions. Comparison of the trend patterns in the
fluxes derived from RAND and REAL procedures of
subsampling (not shown) shows much closer compara-
bility of the RAND with FULL than in the case of
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FIG. 3. Linear trends (W m~2 per decade) in the zonally aver-
aged net heat flux, estimated from the fluxes computed from the
regularly sampled parameters (FULL; yellow bars), the actual
VOS-like sampled parameters (REAL; red bars), and from the
randomly sampled parameters (RAND; blue bars).

REAL in the Northern Hemisphere mid- and subpolar
latitudes during winter. Typically, trend estimates de-
rived from RAND and FULL show qualitatively simi-
lar spatial patterns with a smaller magnitude of trends
for RAND. Effects shown in Fig. 2 for sensible plus
latent turbulent fluxes are also evident for the radiative
fluxes (no figure shown). Relative differences between
the trend estimates in LW and SW radiation, derived
from FULL and REAL, are smaller than in the turbu-
lent fluxes in agreement with the smaller level of sam-
pling errors in radiative fluxes.

Figure 3 shows estimates of linear trends in zonally
averaged annual mean net heat fluxes, derived from
FULL, REAL, and RAND products. In the Northern
Hemisphere the largest disagreement occurs in the mid-
latitudes, where REAL and RAND show significantly
negative changes and no significant trends were identi-
fied in FULL. In the Southern Hemisphere Tropics and
subtropics both REAL and RAND indicate positive
trends, while FULL shows weak positive trends be-
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tween 10° and 20°S and the trends of the opposite sign
south of 20°S. In the mid- and subpolar latitudes of the
Southern Hemisphere the trends in REAL and RAND
are in a qualitative agreement with those computed
from FULL; however, the values are considerably
smaller, especially in RAND. Thus, sampling may have
impacts even on the secular tendencies in zonally aver-
aged climatological mean flux estimates.

A similar analysis was performed with the sub-
sampled data from ERA-40. Comparison of the linear
trends for the period 1958-2001 (no figure shown) in-
dicates that the trend estimates in FULL and REAL
products derived from ERA-40 data disagree in the
Labrador Sea and in the northwestern Pacific as they
do in the case of the use of NCEP-NCAR data. The
Labrador Sea trends in turbulent fluxes change sign
from +3 to —2 W m~? per decade between FULL and
REAL, which is quite consistent with the estimates de-
rived from NCEP-NCAR data for the same 44-yr pe-
riod (1958-2001). Patterns of the linear trend differ-
ences between FULL and REAL, derived from ERA-
40 in the Southern Ocean, are qualitatively consistent
with those for NCEP-NCAR; however, they show
about 30% larger differences in the South Pacific and
somewhat weaker differences in the South Atlantic.
Summarizing, we can conclude that the use of alterna-
tive reanalysis (ERA-40) for the period 1958-2001
qualitatively and quantitatively supported findings de-
rived from the NCEP-NCAR reanalysis.

3. Sampling uncertainties influencing interannual
variability of surface fluxes

Let us now consider the influence that sampling has
on shorter-period interannual variations of surface heat
flux fields. We computed correlations between the de-
trended anomalies of differently sampled net surface
heat flux products. Figure 4 shows maps of the corre-
lation coefficients between the net heat fluxes com-
puted from the regularly sampled variables (FULL)
and those derived from subsampled fields (REAL and
RAND) for the winter and summer season. Similar re-
sults are obtained for all flux components (not shown).
They are consistent with the results of Sterl (2001), who
analyzed correlations between reanalyses and VOS-
based flux products. The first thing to notice is that in
both seasons highest correlations between subsampled
(RAND and REAL) and regularly sampled (FULL)
net surface heat fluxes are found in relatively well
sampled regions like, for example, the central North
Atlantic region. In both seasons relatively low correla-
tions (below the significance level of 0.4) are found in
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randomly sampled variables (RAND) for (a), (c) boreal winter and (b), (d) boreal summer derived from the NCEP-NCAR reanalysis

for the period 1948-2002.

the high-latitude North Atlantic and North Pacific as
well as in the Southern Ocean where sampling is rela-
tively poor. Furthermore, it turns out that subsampling
in the tropical Pacific and the subtropical North Atlan-
tic has a larger impact on interannual near-surface heat
flux variations during wintertime compared to the sum-
mer season. Besides slightly higher sampling density in
summer, this difference can also be attributed to the
stronger synoptic variability during winter time in these
areas. Moreover, it reveals that correlations between
FULL and REAL (Figs. 4a,b) are generally lower than
those between FULL and RAND (Figs. 4c,d). In the
Labrador Sea in summer and in the Greenland-
Iceland—Norwegian (GIN) Sea for both seasons ran-
dom sampling results in correlations of about 0.5-0.6,
whereas the actual sampling (REAL) leads to substan-
tially lower correlation coefficients (0.1-0.3). In sum-
mary, it can be said that sampling is an issue in the
context of temporal characteristics of interannual sur-
face heat flux variations in some of the regions, which
are known to play key roles in terms of interannual
variability of the coupled atmosphere—ocean system.
This is particularly true if the actual sampling is taken
into account (REAL).

In Part I we compared the effects of undersampling
in NCEP-NCAR reanalyses with those for ERA-40 re-
analysis data and seasonal forecasts with the ECMWF
model (ECF) for which no data were assimilated. The
comparison, which was carried out for the period 1992-
2001, is characterized by quite different data assimi-
lated in the two reanalyses (primarily satellites). To

assess the robustness of sampling impact on variability
patterns in different NWP products, for boreal winters
of the period 1992-2001, we computed correlations be-
tween FULL and RAND products derived from
NCEP-NCAR, ERA-40, and ECF (Fig. 5). Since sea-
sonal forecasts are involved in the comparison, we only
considered the effect of random sampling errors, be-
cause ECF cannot reproduce particular synoptic
events, although it can quite adequately simulate the
magnitudes of intramonthly synoptic variability (Part
I). The correlations for NCEP-NCAR fluxes in this
period (Fig. 5a) reveal some differences from that de-
rived using the full 55-yr dataset (Fig. 4c), showing rea-
sonably higher correlations (with, however, the 95%
significance level being around 0.6 due to the shorter
time series used) and reflecting differences in sampling
for the two periods. Nevertheless, our major conclu-
sions from the analysis of Fig. 4 are also valid for Fig.
Sa—poorly sampled areas in the subpolar latitudes of
the Northern Hemisphere and in the Southern Ocean
are characterized by very low, nonsignificant correla-
tion. Figure 5b, derived from the ERA-40 reanalysis,
shows very good similarity with that for NCEP-NCAR
fluxes. Some minor local differences can be noticed in
the Southern Ocean where in some areas ERA-40
shows higher correlations. Interestingly, the correlation
pattern derived from ECF shows very close compara-
bility with that for ERA-40, implying that the ECMWF
model is capable of producing realistic synoptic vari-
ability even if no data are assimilated (i.e., the model
climate is realistic).
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A commonly used tool in climate research to de-
scribe dominant (in terms of explained variance), spa-
tially covarying patterns in multivariate time series is
empirical orthogonal function (EOF) analysis (von
Storch and Zwiers 1999). In the following it is shown
how sampling affects the leading two EOFs of surface
net heat flux anomalies, both in the North Atlantic and
North Pacific. We will focus on the winter season,
which is characterized by the strongest synoptic and
interannual variability and by the poorest sampling in
the Northern Hemisphere. Since the ice cover shows
interdecadal variations in the North Atlantic and North
Pacific and, therefore, can affect the interannual vari-
ability, we applied the largest ice extent for the period
1948-2002 as ice mask throughout the whole period.
This mask was derived from the Global Sea Ice and
SST dataset GISST climatology (Parker et al. 1995) and
the ice cover from the NCEP-NCAR reanalysis by set-
ting the particular grid cell to the ice mask when the ice
was identified in either dataset.

The leading two EOFs of North Atlantic net surface
heat flux anomalies are shown in Fig. 6 for (a), (c)
FULL and (b), (d) REAL. The main characteristics of
the leading two EOFs are very similar for the two
datasets; that is, EOF1 and EOF2 show tripole struc-
tures, which are in quadrature (see also Cayan
1992a,b). There are differences, however, which are
particularly prominent for EOF1 in the Labrador Sea
region, whereas EOF1 for FULL shows anomalously

-90

FIG. 6. The (a), (b) first and (c), (d) second EOFs of net heat flux anomalies in the North Atlantic computed from the (a), (c)
regularly sampled variables (FULL) and (b), (d) VOS-like sampled variables (REAL).
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strong net surface heat fluxes out of the ocean in excess
of 70 W m~2, and the net surface heat flux anomalies
for REAL suggest that the ocean is subject to weak
anomalous heating. These differences are most pro-
nounced for the years after 1973, when the sampling in
the Labrador Sea has decreased sharply (not shown).
Albeit less pronounced, differences between EOF2 for
FULL and REAL are also most prominent in the Lab-
rador Sea region. In FULL the entire Labrador Sea
belongs to the northern center of action demonstrating
the same sign of anomalies as in the central subpolar
Atlantic in contrast to the REAL fluxes, whose second
EOF shows in the Labrador Sea the same sign of
anomalies as in the southern center of action. Differ-
ences of EOF1 between FULL and REAL also show
up in terms of the amount of variance explained by the
first EOF (39% versus 27% for FULL and REAL, re-
spectively). The EOFs for RAND (not shown) are in-
termediate between FULL and REAL, though more
closely resembling those for REAL. The first EOF of
RAND explains 31% of the total variance.

The first principal components (PC1, hereafter),
which are associated with the first EOFs of North At-
lantic net surface heat flux anomalies are shown in Fig.
7a for FULL and REAL. The correlation between the
two time series amounts to 0.94; that is, about 89% of
the variance is explained by a linear relationship. Evi-
dently the subsampled dataset (REAL) captures most
of the temporal characteristics in a larger-scale context.
We also note in passing that the first EOFs and PCs for
FULL, REAL, and RAND capture the influence of the
North Atlantic Oscillation (NAO). Figure 6a also
shows the NAO index as given by Hurrell (1995). The
correlation coefficients of PC1 for FULL and REAL
with the NAO index amount to 0.72 and 0.63, respec-
tively.

EOF analysis of the anomalies of surface fluxes in the
North Pacific (Fig. 8) reveals similar results to those
found for the North Atlantic with respect to the impact
of sampling on the variability patterns. The first EOFs
in all flux products show the southwest—-northeast pat-
tern described by Cayan (1992a), Iwasaka and Wallace
(1995), and Tanimoto et al. (2003). This pattern ac-
counts for 23% of variance in FULL and for 16% and
17% of variance in REAL and RAND, respectively.
As for the North Atlantic, the first normalized PCs
(Fig. 7b) for the North Pacific are highly correlated with
each other, with a correlation coefficient of 0.86. They
are also linked to the North Pacific index (NPI; Tren-
berth and Hurrell 1994) (Fig. 7b), with correlations
amounting to 0.61 and 0.59 for FULL and REAL, re-
spectively. The major difference between the first EOF
of FULL on the one hand and REAL and RAND on
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the other is observed in the subpolar northwest Pacific,
where FULL shows the same sign of anomalies as in the
northeastern center of action, while in the REAL and
RAND products the sign of anomalies here is steered
by the Kuroshio pattern. Comparison of the second
EOFs (Figs. 8c,d) shows pronounced difference in the
spatial patterns of fluxes computed from the regularly
sampled and undersampled variables in the subpolar
northwest Pacific. Correlation coefficients of the sec-
ond PC of FULL with those of REAL and RAND
amount to 0.54 and 0.63, respectively.

EOF analysis performed with the FULL, REAL, and
RAND flux products derived from ERA-40 reanalysis
data for 1958-2001 (no figure shown) reveals similar
(with respect to the sampling impact on variability pat-
terns) conclusions to those drawn form the analysis of
NCEP-NCAR data. In the North Atlantic the first
EOF of FULL derived from ERA-40 has a spatial
structure, which is very similar to that obtained for
NCEP-NCAR data. In the Labrador Sea region, how-
ever, the associated anomaly is slightly smaller, explain-
ing a smaller amount of the variance. As in the case
with NCEP-NCAR, the impact of sampling becomes
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evident in the first EOF and especially noticeable in the
second EOF being even more pronounced than for
NCEP-NCAR data. In the Pacific, alternatively, sam-
pling impact on the first and second EOFs, although
quite evident, is a little bit less pronounced than in
NCEP-NCAR. It is important to note that the differ-
ence of EOF patterns between NCEP-NCAR and
ERA-40 is smaller compared to differences of the
EOFs between FULL and REAL for each of the re-
analysis products even in the poorly sampled Labrador
Sea and northwestern subpolar Pacific.

To summarize the results of the intercomparison of
EOFs and PCs obtained from different flux products
we computed the correlation between the PCs of sur-
face heat flux anomalies from FULL (reference field)
and the projections of the anomalies of REAL and
RAND onto the EOFs of the reference field (i.e., quasi—
principal components). The correlations between the
projections of RAND flux anomalies are somewhat
higher than those for the REAL (Table 1). Squared
correlation in the North Atlantic is higher than in the
North Pacific. Correlations for the first PCs vary from
80% to 90%, implying quite close comparability of the
leading modes. However, for the second PCs correla-
tion between the projections decreases to about 60%,
implying significant differences in the second modes.
Table 1 also shows that standard deviations (std) of the
PCs and projections using different flux products are
quite different. Projections derived from RAND and
REAL show variability, which is typically 10%-15%
and 23% smaller than those of the first and second,
respectively, PC of FULL anomalies. A corresponding
analysis performed for the ERA-40 reanalysis (both
RAND and REAL) and ECF (RAND) shows quite
similar results, implying the robustness of our conclu-

sions to the use of different NWP products. Again, the
first PCs of undersampled fluxes are highly correlated
with the FULL product. Correlation coefficients for
ECF are about 10% lower than those for ERA-40.
Similar to the NCEP-NCAR, both ERA-40 and ECF
exhibit noticeable drop of correlation for the second
PCs to 54%-70%.

4. Summary and discussion

The influence that temporal and spatial inhomoge-
neities of the observed sampling density have on the
characteristics of estimates of sea—air flux variations has
been investigated. It has been found that sampling lo-
cally does have a substantial impact on the character-
istics of interannual variability of surface fluxes. While
the leading two EOFs of surface heat flux variability,
derived from the regularly sampled and VOS-like sub-
sampled fields, are comparable with each other over
most parts of the North Atlantic and North Pacific,
large differences are found in the Labrador Sea region
and in the subpolar northwest Pacific. Moreover, a
similar analysis for linear trends in surface flux compo-
nents reveals statistically significant differences in the
flux anomalies derived from regularly sampled and
from VOS-like subsampled individual parameters in
the Southern Ocean and in the subpolar latitudes of the
Northern Hemisphere. The largest sampling influence
is found during the winter season characterized by gen-
erally poorer sampling in comparison to the summer
season. The results of this study suggest that in well-
sampled regions (e.g., in the Northern Hemisphere
midlatitudes and along the major ship routes of the
Southern Hemisphere) VOS data can provide reliable
estimates of climate variability in air-sea exchanges.
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TABLE 1. Results of the projections of the net heat flux anomalies derived using randomly sampled (RAND) and VOS-like sampled
(REAL) individual variables onto the EOFs of the “reference” (FULL) net heat flux anomalies for NCEP-NCAR and ERA-40
reanalyses as well as for ECMWE seasonal forecasts (ECF). Left numbers are squared correlations in percent with FULL (regularly
sampled) projection, and right numbers are the ratios between the standard deviations of the projected fluxes and the reference field.

First EOF

Second EOF

Squared

Flux product correlation (%)

standard deviations

Ratio of
standard deviations

Ratio of Squared

correlation (%)

North Atlantic

REAL NCEP (48-02) 84.8 0.89 61.4 0.81
ERA-40 (92-01) 92.8 0.90 64.5 0.87
RAND NCEP (48-02) 89.1 0.93 67.6 0.84
ERA-40 (92-01) 94.9 0.91 70.1 0.90
ECF (92-01) 83.4 0.86 61.0 0.81
North Pacific
REAL NCEP (48-02) 81.2 0.85 58.7 0.77
ERA-40 (92-01) 85.3 0.83 64.3 0.81
RAND NCEP (48-02) 83.8 0.91 62.4 0.82
ERA-40 (92-01) 88.0 0.89 65.9 0.88
ECF (92-01) 79.5 0.84 54.6 0.72

This is especially true for the period before the 1950s
when VOS data represent the only source of informa-
tion about air-sea interaction. However, in poorly
sampled regions sampling errors may seriously affect
the conclusions drawn exclusively from VOS data. De-
spite many inhomogeneities also inherent in reanalyses
data, for poorly sampled areas they represent the most
reliable source of information about air-sea flux vari-
ability since the International Geophysical Year in
1957/58.

Artifacts in variability patterns associated with inad-
equate and temporally changing sampling can be higher
than those resulting from the uncertainties associated
with variable corrections, which represent another pos-
sible source of time-dependent uncertainties. For in-
stance, the largest differences in linear trends derived
from FULL and REAL (Fig. 2) amount to as much as
5-7 W m~ 2 per decade. Tentative estimates show that
changes in the ratio of anemometer measurements and
Beaufort estimates of the wind speed or growing ship
size (i.e., increasing height of anemometer measure-
ments) can result in artificial tendencies in turbulent
fluxes of about 1-4 W m 2 during the period from 1973
to 2002, for which the WMO-47 metadata are available
(Kent et al. 2007). Furthermore, the influence of sam-
pling on interannual variability is highly localized,
which is not the case for the effect of variable correc-
tions (Kent et al. 1993; Josey et al. 1999). The impact of
changes in observational practices for measuring wind
speed is not localized and shows a somewhat stronger
magnitude in the midlatitudinal regions, where the con-
tribution of the wind speed to the turbulent fluxes is
higher than in the Tropics.

Lindau (2003) quantified the contribution of the un-
certainties in individual monthly mean latent heat
fluxes to the interannual variability and found that er-
rors in the monthly mean latent fluxes contribute up to
60%-80% of the magnitude of interannual variability.
In Fig. 9 we show the interannual standard deviation
(std) of the latent heat fluxes computed from the regu-
larly sampled individual variables along with the ratio
between the std of fluxes computed from FULL and
REAL. In well-sampled areas, where sampling errors
are relatively small, the ratio is slightly higher than 1.
However, in regions of strong undersampling this ratio
may increase to 3—4 with the highest values found in the
Southern Ocean. This shows the strong impact that
sampling errors have onto the estimated magnitude of
interannual variability. Note that the same result is im-
plied by Table 1, quantifying the covarying modes in
FULL, REAL, and RAND products. Lindau (2003), by
using VOS observations, has been dealing with all
sources of uncertainties, including observational errors.
In our case we exclusively estimated the effect of sam-
pling uncertainties onto interannual variability. First, in
most areas where large values of the ratio are found
(Figs. 9c,d), many monthly values were produced by
spatial interpolation. Whatever interpolation scheme is
used, it tends to reduce the actual magnitude of inter-
annual variability. However, even in the regions where
there are samples, three—seven observations per month
even from different platforms are not enough to cap-
ture the influence of extreme flux values on the
monthly mean.

The closest to 1 and smaller than 1 values of the ratio
in Fig. 9 were found in the areas of oversampling and
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not undersampling, implying that the true variability is
better captured in more densely and evenly sampled
regions. In the FULL flux product (Figs. 9a,b) the mag-
nitudes of interannual variability in the Southern
Ocean are 1.5-2.5 times smaller than in the Northern
Hemisphere midlatitudes, which reflects the differences
in synoptic activity and less pronounced temperature
and humidity gradients, but can be partly attributed
also to the smaller data assimilation input in the South-
ern Ocean. However, for the recognized VOS products
(da Silva et al. 1994; Josey et al. 1999; Lindau 2003) this
ratio is considerably smaller, ranging from 2 to 7-10
and implying an underestimation of the magnitude of
interannual variability in VOS fluxes over data-sparse
areas due to undersampling.

As was pointed out in Part I, the development of new
algorithms for the reconstruction of flux anomalies is an
important outstanding issue. Since methods of Kaplan
et al. (1998, 2000, 2003) and Smith and Reynolds (2003,
2004) are quite skillful for the reconstruction of SLP
and SST anomalies, their adaptation to the long-term
series of air—sea fluxes would be desirable. The results
of this study show, however, that care has to be taken
when choosing the dataset used for computing the
EOFs (used later on in the reconstruction). Any set of
EOFs, which is based on VOS-data only, will suffer
from large sampling uncertainties in some key areas as
has been demonstrated in this study.

In Part I we have shown that the sampling density for
individual VOS variables in ICOADS is typically
higher than that of the full sets of variables, required for

the proper computation of surface fluxes (Fig. 1 of Part
I). Given the large contribution of drifting buoys in
ICOADS during the last decade (Worley et al. 2005),
we can expect that sampling of SST, SLP and, to a
lesser degree, wind speed is better than the other flux-
related parameters. This implies that for some poorly
sampled regions the so-called monthly summary
trimmed groups (MSTG) products can be used for pilot
estimates of variability. MSTG provides 1° and 2° av-
eraged individual parameters derived from all available
reports of this parameter and thus is less affected by
undersampling. On the other hand, the use of MSTG
requires application of the bulk formulas to the
monthly means (the so-called classical method) and not
to individual variables (the so-called sampling method).
The classical method of the surface flux computation is
known to affect climatological means (e.g., Esbensen
and Reynolds 1981; Hanawa and Toba 1987; Gulev
1994), but it influences variability patterns to a lesser
extent, changing the magnitudes of variability but not
the tendencies (e.g., Gulev 1997). In this sense future
improvement of MSTG products (Worley et al. 2005)
could be very desirable. It is important to quantify the
impact of the “standard” and “enhanced” MSTG on
the variability patterns (Wolter 1997). Note that im-
provement of MSTG requires application of variable
corrections. Their application, however, decreases the
number of reports available, because some corrections
need information about the other variables. Thus, the
“fully corrected” MSTG product will have sampling
density comparable to that typical for the flux sampling.
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An alternative way is to apply some corrections a pos-
teriori to the monthly values (Ward and Hoskins 1996;
Rayner et al. 2003). The same problem appears when
the so-called MSTG pseudofluxes (products (87 - V),
(8e - V)) are used (e.g., Cayan 1992a,b) to partly ac-
count for the averaging effects.

Given that the impact of poor sampling is confined to
rather small regions, it is natural to ask whether these
differences actually matter. At least from the point of
view of the atmosphere-driving anomalies of the North
Atlantic circulation, we think that these differences are
of paramount importance. Both observational (Curry
et al. 1998; LabSea Group 1998) and modeling studies
(e.g., Eden and Jung 2001; Eden and Willebrand 2001;
Gulev et al. 2003) suggest that changes in the winter-
time convective activity in the Labrador Sea region lead
to subsequent changes of the North Atlantic circula-
tion; in this context turbulent surface heat flux anoma-
lies in the Labrador Sea play a crucial role. For ex-
ample, Eden and Jung (2001) tested the NAO impact
on the observed interdecadal variations of the North
Atlantic circulation by forcing an ocean GCM with an
NAO-related surface heat flux forcing over the period
1865-1997. The NAO-related forcing function was ob-
tained by regressing NCEP-NCAR surface heat flux
anomalies for the period 1957-97 onto the observed
NAO index and then further combining the regression
pattern with the observed NAO index for the period
1865-1997. Their spatial pattern largely resembles
EOF1 of FULL (Fig. 6), and their model run has cap-
tured key aspects of North Atlantic interdecadal vari-
ability. Similarly, Eden and Willebrand (2001) and Gu-
lev et al. (2003) obtained a realistic response of the
North Atlantic meridional overturning in their ocean
GCM experiments, which were forced using surface
heat fluxes taken from the NCEP-NCAR reanalysis
during the last several decades.

Given the importance of NAO-related surface heat
flux forcing, particularly in the Labrador Sea, it is likely
that a much weaker response (if any) would have been
found had the mentioned studies used VOS data (cf.
Fig. 6b) for their runs. This was exactly what happened
in the study of Hikkinen (1999). She used for her simu-
lation 3-yr ECMWF operational flux climatology
(Barnier et al. 1995) to which interannual anomalies for
1950-89 were added from the ICOADS-based Univer-
sity of Wisconsin—Milwaukee (UWM) flux climatol-
ogy (da Silva et al. 1994). Thus, the forcing function was
suffering from sampling effects in the Labrador Sea as
any VOS-derived climatology. Being quite reasonable
in many respects, especially in the subtropical and mid-
latitudinal regions, the results by Hikkinen (1999)
show strong differences with the above-mentioned ex-
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periments in the subpolar latitudes. Apart from the dif-
ferent model being used by Hakkinen (1999), sampling
errors in the Labrador Sea region could explain the
different outcomes of the modeling studies.

Given that large differences occur in relatively poorly
observed areas one might ask how reliable “regularly
sampled” reanalysis products actually are. We think
that in poorly observed regions, at least in the Northern
Hemisphere, their quality is relatively high compared
to interpolated fields obtained from VOS data only.
Comparisons with alternative reanalysis (ERA-40) and
ECF support indirectly our conjecture demonstrating
very similar results to those obtained using NCEP-
NCAR. Moreover, medium-range forecasts based on
state-of-the-art forecasting systems show a remarkable
skill in predicting the large-scale atmospheric flow well
into the far-medium range (e.g., Simmons and Holling-
sworth 2002; Kalnay 2003), suggesting that the analyses
are of high quality. This is especially true for subpolar
oceanic regions where analysis error growth is known
to be potentially at its largest (Buizza and Palmer 1995).

Of course, one might argue that the analysis quality
has been improved dramatically with the availability of
satellite data around the late 1970s. While this is cer-
tainly the case for the Southern Hemisphere, forecast
experiments with recent versions of the ECMWF fore-
casting system for the Northern Hemisphere and the
presatellite era show a remarkable forecast skill as well
(Jung et al. 2004; Uppala et al. 2005), which is not too
dissimilar from forecasts carried out for recent years
(satellite era). This suggests that conventional observa-
tions alone are sufficient to yield very reliable analysis
fields for the Northern Hemisphere. Finally, it is worth
pointing out that atmospheric data assimilation systems
actually make use of a variety of observational data
(not just VOS data). First, the atmospheric flow—and
therefore indirectly surface heat fluxes—is constrained
by both sea and land observations, which are critical for
the reliable representation of state of the atmosphere
(Bengtsson et al. 2004a). The additional use of land
observations, for example, from the west coast of
Greenland, might be crucial for areas such as the Lab-
rador Sea. Second, atmospheric data assimilation sys-
tems make effective use of past information as well
(so-called cycling). In fact, it has been estimated that
the global observation influence per assimilation cycle
amounts to 15% whereas the first guess (short-range
forecast from a previous analysis) influence amounts to
85% (Cardinali et al. 2004). It is this effective use of all
different kinds of available data that make reanalysis
products so valuable for use in climate-related studies.
We do believe that in the future long-term time series
of blended flux products (Yu et al. 2004) and satellite-
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based flux products (e.g., Chou et al. 2003; Bentamy et
al. 2003) will become available at the reanalyses tem-
poral resolution as the last years of the blended wind
products (Zhang et al. 2006). This will allow the use of
them for estimation of sampling errors impact on vari-
ability patterns.
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