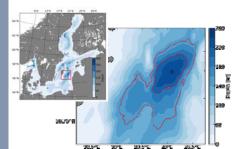


Energetics of mixing in a stratified basin without tides


Holtermann, Peter¹ | Umlauf, Lars¹ | Tanhua, Toste²

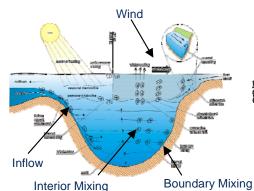
1: Leibniz Institute for Baltic Sea Research Warnemünde 2: Leibniz Institute IFM Geomar Kiel

Motivation/Baltic Tracer Release Experiment

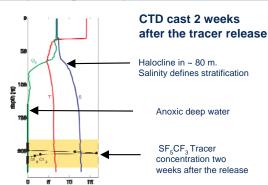
Gotland Basin (GB)

· largest Basin in the Baltic

Natural laboratory to study


- wind induced mixing (no tides)
- barotropic contribution to mixing near inertial wave contribution to mixing
- boundary/interior mixing
- → Mixing in the GB defines the residence time of water

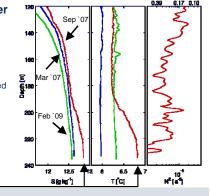
in the central Baltic Sea


BaTRE

- combined approach of
- long time moorings (Temperature, Salinity, Currents)
- tracer release (~1kg SF₅CF₃)
- microstructure measurements (MSS-90)

Processes

Hydrography


Inflow just before the tracer release

• Inflow ~ April 2007

• Tracer Release Sep. 2007

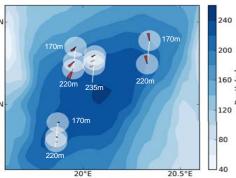
Deep water weakly stratified, compared to the surface water, but strong compared to ocean basins •Santa Monica Basin ~ 1 h •Santa Cruz Basin ~ 2 h

Inflow replaces deep water with warm and salty water

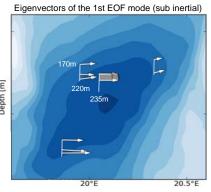
Seasonality of mixing

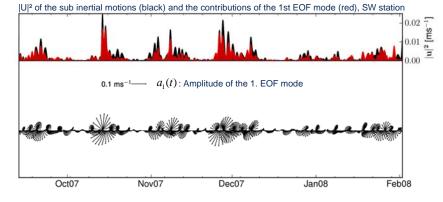
· Same seasonality in the kinetic energy within

momentum input through


wind

- Diffusivity (Eq. (1), (2)) changes one order of magnitude between mixing/quiescent period. storm events are resolved
- Volume averaged dissipation rates (Eq. (3), (4)) are in the order of 10-9 W kg⁻¹, the noise level of the microstructure probe, pointing to boundary mixing, where higher dissipations were measured


Effects of mixing: Buoyancy


- change of buoyancy over time · strong seasonality of the change
- → mixing period T_{min} → quiescent period. T_{quie}

Ring current

Empirical Orthogonal Functions

Ring current

- •permanent current
- motions with periods below 15 days
- counter clockwise (see trajectory plot
- decreasing to the centre and the south rim strongest on the north rim
- · mixing/quiescent period seasonality • driving processes not clear

• currents O(0.03 m s⁻¹)

Sub inertial Motions

- "barotropic" motions from the bottom up to 80 m
- contribute 64% to the kinetic energy
- motions in the 3 day period are coherent and counter clockwise
- 1st mode of EOF
- → explains 73% of the sub inertial motions → shows coherence via the same direction of the
- Eigenvectors (Figure above)

Ideas about the nature of motions • coherence of motions larger than the internal

- Rossby radius (~5 km)
- excludes Kelvin waves (diameter of GB >> 5 km)
- excludes Baltic Sea eddies (Beddies) • possibly Topographic waves (period fits ~ 72
- hours) but the velocity should show two counter clockwise rotating gyres, the role of stratification is unclear. Numerical modelling should shed some

$\vec{u}(t,\vec{x}) = \sum a_n(t) \vec{\Psi}_n(\vec{x})$ (0)

currents using EOFs:

Description of the

Budget Methods

DiffusivityThe turbulent diffusivity is calculated by measuring the change of Salinity/Temperature over time and the assumption that advective fluxes are zero or neglegible:

$$\frac{d}{dt} \int_{V} S dV = -\int_{A} S w dA - \int_{A} F_{S} dA$$
 (1) $\langle F_{S} \rangle_{A} = -\kappa_{S} \frac{\partial \langle S \rangle_{A}}{\partial z}$ (2)

Dissipation rate

The volume averaged dissipation rate is calculated via the change of the potential energy in an fixed volume and the

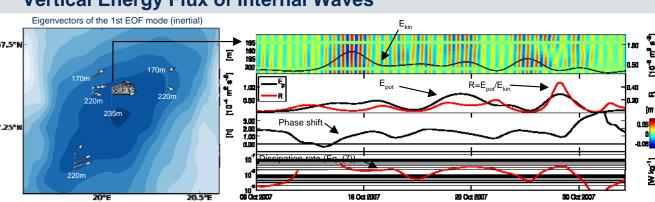
$$\frac{d}{dt} \int_{V} E_{P} dV = -\int_{V} b w dV - \int_{V} \langle w'b' \rangle dV \quad (3) \quad \gamma \varepsilon = -\langle w'b' \rangle \quad (4)$$

Tracer Analysis

BaTRE tracer distribution

- SF₅CF₃Tracer Injection first sole injection of SF₅CF₃
- injected in a depth of ~ 190 m
- · horizontally never homogeneous • fitted to Gaussian curve
- · Diffusivities in the same order of magnitude as computed with budget methods
- needs further analysis

Available Energy



Rotary spectrum

- Inertial (T < 1 day)
 Clockwise, mostly inertial/near inertial internal
- Sub inertial (15 days > T > 1 day)
- · Highest contribution to the total energy Counter clockwise
- Low (T<15 days)

Energy	T _{low}	T _{subinertial}	T _{inertial}
%	9	64	27

Vertical Energy Flux of Internal Waves

Near inertial wave energy flux

- measurable phase shift
- •Near inertial internal waves R<<1
- frequencies are not well known, broadband peak around the inertial frequency
- circumvent unknown frequency via function G (Eq. (6)) and the well known phase shift
- · Energy is expressed via the dissipation rate (Eq. (7)), this can be compared with the budget methods and the

Energy flux calculation via the phase velocity