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Motivation/Baltic Tracer Release Experiment

Gotland Basin (GB)

« largest Basin in the Baltic

Natural laboratory to study

« wind induced mixing (no tides)

« barotropic contribution to mixing

« near inertial wave contribution to mixing

« boundary/interior mixing

- Mixing in the GB defines the residence time of water
in the central Baltic Sea

BaTRE

combined approach of

« long time moorings (Temperature,
Salinity, Currents)

« tracer release (~1kg SF,CF,)

« microstructure measurements (MSS-90)
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Seasonality of mixing
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Effects of mixing: Buoyancy
change of buoyancy over time

« strong seasonality of the change —}2
- mixing period T, T
- quiescent period. T,
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Budget Methods Tracer Analysis

BATRE fracer distnibution
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Diffusivity e

The turbulent diffusivity is calculated by measuring the change !

of Salinity/Temperature over time and the assumption that e

advective fluxes are zero or neglegible:
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« injected in a depth of ~ 190 m

« horizontally never homogeneous

« fitted to Gaussian curve

« Diffusivities in the same order of magnitude
as computed with budget methods

« needs further analysis

Dissipation rate

The volume averaged dissipation rate is calculated via the
change of the potential energy in an fixed volume and the
assumption of no advective fluxes:
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Contact: Peter Holtermann (peter.holtermann@io-warnemuende.de)

Processes

Wind

Inflow

Interior Mixing

Ring current

Boundary Mixing
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Ring current
spermanent current
« motions with periods below 15 days
e counter clockwise (see trajectory plot
above)
« decreasing to the centre and the south rim,
strongest on the north rim
« currents O(0.03 m s)
« mixing/quiescent period seasonality
« driving processes not clear
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Rotary spectrum
« Inertial (T <1 day)

e Clockwise, mostly inertial/near inertial internal

waves
« Sub inertial (15 days > T > 1 day)
« Highest contribution to the total energy
« Counter clockwise
« Low (T<15 days)
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Hydrography

|
. 032 017 010
" CTD cast 2 weeks Inflow just before the tracer ™ " ~
after the tracer release release Sep 07
« Inflow ~ April 2007 140
Halocline in ~ 80 m. « Tracer Release Sep. 2007
Salinity defines stratification 160
E
5 Deep water weakly stratified, compared Em
. to the surface water, but strong o
Anoxic deep water .
compared to ocean basins -
*Santa Monica Basin ~ 1 h
I eSanta Cruz Basin~2 h \
! SF,CF, Tracer 20
oo | < concentration two —.
weeks after the release
f m m® Inflow replaces deep water with warm 1z 125 Mz e 65 A7 "t
and salty water s’ (el N

Empirical Orthogonal Functions

Eigenvectors of the 1st EOF mode (sub inertial) U[2 of the sub inertial motions (black) and the contributions of the 1st EOF mode (red), SW station
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Description of the
currents using EOFs:

Ideas about the nature of motions

« coherence of motions larger than the internal
Rossby radius (~5 km)

« excludes Kelvin waves (diameter of GB >> 5 km)
« excludes Baltic Sea eddies (Beddies)

« possibly Topographic waves (period fits ~ 72
hours) but the velocity should show two counter
clockwise rotating gyres, the role of stratification is
unclear. Numerical modelling should shed some
light on the question

Sub inertial Motions

« barotropic* motions from the bottom up to 80 m
(above unknown)

« contribute 64% to the kinetic energy

« motions in the 3 day period are coherent and
counter clockwise

« 1st mode of EOF

- explains 73% of the sub inertial motions

-> shows coherence via the same direction of the
Eigenvectors (Figure above)

« Highly intermittent

Vertical Energy Flux of Internal Waves

Eigenvectors of the 1st EOF mode (inertial)
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Near inertial wave energy flux
« measurable phase shift
*Near inertial internal waves R<<1

« frequencies are not well known, broadband peak around _8& _ G __pot.
quer = (6)
the inertial frequency c E
« circumvent unknown frequency via function G (Eq. (6)) _ _ . kin
and the well known phase shift F; = Cg E F; =c GF (5)
« Energy is expressed via the dissipation rate (Eq. (7)), z : a
this can be compared with the budget methods and the <€> = F_AV (7)

microstructure measurements

Energy flux calculation
via the phase velocity



