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Motivation

One of the most important natural causes of climate change
are major volcanic eruptions as they have an significant
impact on the Earth's global climate system (Fig. 1). To
evaluate the climate response to major volcanic eruptions
we use the Earth System Model of Intermediate Complexity
(EMIC) CLIMBER by forcing it with a new radiative forcing
data set comprising large Plinian eruptions from volcanoes
at the Central American Volcanic Arc (CAVA) over the last
200 ka. This specifically created radiative forcing data set is
based on the "petrological method" and use information
about strength and height of the volcanic sulphur injection
(1, 2). Our first evaluation involves simulations forced with
the assessed radiative forcing of the largest CAVA eruption
(~700 Mt SO,) Los Chocoyos (84 ka). By comparing these
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eruption, the one of Mt Pinatubo in June 1991 (~17 Mt
SO,), we analyse similarities and differences, which may be
generated by complex relationships between the radiative
forcing and the climate system. The same set of forcing is
also used for simulations with the complex Earth System
Model (ESM) from MPI. Similarities and differences between
the two different model runs will be used for a better
understanding of the complex climate interactions after
major volcanic eruptions. We consider global atmospheric
effects, as soon as possible changes in the ocean
circulation, the carbon cycle and vegetation will follow.

Los Chocoyos vs. Pinatubo eruption
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Compilation of the volcanic forcing Validation of the SO,—AOD relationship

Based on the atmospheric SO, injection (minimum Simulations of a number of CAVA eruptions of different
value) and using simple linear relationship, we derive magnitudes with the model MAECHAMS (T42/L39) with the

o Y Last eruption: 84 ka BP (Tab. 1): HAM aerosol microphysics module (19) (Fig. 6)
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Monthly AOD forcing for LC ‘ month month Shown is the mean of the two winter s(DJF) and summers (JJA), respectively
D I SAT decreases after PI and LC, respectively, in particular for The observed warming in the NH winter season and the cooling in the summer
; the CLIMBER simulations (Fig. 9, 10) and for Northern season after the eruption is in particular seen in the MPI-M ESM (Fig. 12a-c).

) Hemisphere (NH) due to high land fraction Overall cooling, especially over (NH) continents, is seen in CLIMBER (Fig. 11a-c)
ol The SAT anomalies for PI are in both models similar, Reduced summer precipitation is seen in the tropics (Fig. 11d, 12d), with a
whereas for LC the differences are clearly seen larger global averaged reduction of -12% for CLIMBER than -5% for MPI-M ESM

P The variability is large in the MPI-M ESM runs ( Fig. 10) in Whereas in Climber the anomalies for LC are one magnitude larger than for PI
Fig. 8 (M. Toohey) comparison to the almost non variability in CLIMBER (Fig. 9) the differences between the two eruptions are not so large in the MPI-M ESM
Yearlv SAT and Sealice Extent (SIE) anomalies (onlv for CLIMBER) Global averaged magnitude of the anomalies for PI are similar in both models

) " - ] éIE i (~-0.2°C), however the differences for LC between the two is high
e o e STy (CLIMBER: ~-2.3°C, MPI-M ESM: ~-0.7°C)
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