
Information and Software Technology 51 (2009) 1739–1749
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Ontology-based modelling of architectural styles

Claus Pahl a,*, Simon Giesecke b, Wilhelm Hasselbring c

a Dublin City University, School of Computing, Dublin 9, Ireland
b BTC Business Technology Consulting AG, Kurfüstendamm 33, D-10719 Berlin, Germany
c University of Kiel, Software Engineering Group, D-24118 Kiel, Germany
a r t i c l e i n f o

Article history:
Received 9 March 2009
Received in revised form 26 May 2009
Accepted 5 June 2009
Available online 18 June 2009

Keywords:
Software architecture modelling
Architecture ontology
Architectural style
Description logics
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.06.001

* Corresponding author.
E-mail addresses: cpahl@computing.dcu.ie, Claus.P

Giesecke@btc-ag.com (S. Giesecke), wha@informatik.u
a b s t r a c t

The conceptual modelling of software architectures is of central importance for the quality of a software
system. A rich modelling language is required to integrate the different aspects of architecture modelling,
such as architectural styles, structural and behavioural modelling, into a coherent framework. Architec-
tural styles are often neglected in software architectures. We propose an ontological approach for archi-
tectural style modelling based on description logic as an abstract, meta-level modelling instrument. We
introduce a framework for style definition and style combination. The application of the ontological
framework in the form of an integration into existing architectural description notations is illustrated.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Architecture descriptions are used as conceptual models in the
software development process, capturing central structural and
behavioural properties of a system at design stage [7]. The archi-
tecture of a software system is a crucial factor for the quality of a
system implementation. The architecture influences a broad vari-
ety of properties such as the maintainability, dependability or
the performance of a system [10]. While architecture description
languages (ADLs) exist [22], these are not always suitable to sup-
port rich conceptual modelling of architectures [12]. Only a few,
such as ACME [10], support the abstraction of architectures into
styles or patterns. If formally defined, these can be used to reason
about architectures and their properties [1].

We present an architectural style ontology, which serves as a
modelling language for formally defined architectural styles and
patterns. We address a number of aspects that go beyond ADLs
such as ACME in terms of style description

� a rich and easily extensible semantic style modelling language,
� operators to combine, compare, and derive architectural styles,
� a composition technique that incorporate behavioural

composition.

The result is an independent style language that can be applied
to extend existing ADLs to include style support. For all three as-
ll rights reserved.

ahl@dcu.ie (C. Pahl), Simon.
ni-kiel.de (W. Hasselbring).
pects, an ontology-based approach to represent architectural
knowledge – here in terms of a description logic, which is an
underlying logic of ontology languages – is a highly suitable formal
framework [3]. Ontologies provide modelling and reasoning sup-
port for information structured in terms of taxonomies and de-
scribed in terms of abstract properties.

The modelling of basic structural connectivity of architectures is
currently adequately supported [21,2,22,7,10] and shall therefore
not be the primary concern in this ontological framework. We
use ontologies as a conceptual modelling approach with reasoning
support to represent architectural styles in terms of style hierarchy
construction and the formulation of architecture concepts and
their relationships. Our architectural style ontology focuses pri-
marily on abstractions of structural aspects of components and
connectors in the form of styles. The terminological level of the
ontology provides vocabulary and a type language for architectural
styles. Instances of this type language are concrete architecture
specifications.

The determination of an architectural style, based on a given set
of quality requirements, should ideally be the first step in software
design [11]. We use a description logic to define an ontology for the
description and development of architectural styles that consists of

� an ontology to define architectural styles through a type con-
straint language,

� an operator calculus to relate and combine architectural styles.

Our aim is to present a conceptual, ontology-based modelling
meta-level framework for software architectures, that allows the
integration of style aspects into existing architectural description

http://dx.doi.org/10.1016/j.infsof.2009.06.001
mailto:cpahl@computing.dcu.ie
mailto:Claus.Pahl@dcu.ie
mailto:Simon. Giesecke@btc-ag.com
mailto:Simon. Giesecke@btc-ag.com
mailto:wha@informatik.uni-kiel.de
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1740 C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749
languages (ADLs) without an explicit notion of architectural styles.
We extend our previous work in this area [26] through an exten-
sion of the core ontology by more elaborate development and com-
position operators (in particular including behaviour in this
context to the previous focus on structural aspects) and by provid-
ing an extensive application in the ACME context that illustrates its
benefits.

We introduce the necessary ontology and description logic
foundations in Section 2. We then present an ontology-based mod-
elling approach for architectural styles in Section 3. Relating these
styles is the focus of Section 4. We define an advanced composition
approach in Section 5. The application of the architectural style
language is illustrated in Section 6. We discuss style-based archi-
tectural modelling in terms of applications beyond ACME, qual-
ity-driven development, and advanced behavioural specification
in Section 7, before reviewing related work in Section 8 and ending
with some conclusions in Section 9.

2. Ontologies and description logic

Before presenting the architectural style ontology, we introduce
the core elements of the description logic language ALC, which is
an extension of the basic attributive language AL [3]. ALC has
been selected since it is the most simple language that provides
a set of combinators and logical operators that suffices for the style
ontology. Ontologies formalise knowledge about a domain (inten-
sional knowledge) and its instances (extensional knowledge). A
description logic, such as ALC, consists of three types of basic
notational elements.

� Concepts are the central entities. Concepts are classes of objects
with the same properties. Concepts represent sets of objects.

� Roles are relations between concepts. Roles allow us to define a
concept in terms of other concepts.

� Individuals are named objects.

Individuals can be thought of as constants, concepts as unary
predicates, and roles as binary predicates. We can define our lan-
guage through Tarski-style model semantics based on an interpre-
tation I that maps concepts and roles to corresponding sets and
relations, and individuals to set elements [18]. Properties are spec-
ified as concept descriptions:

� Basic concept descriptions are formed according to the following
rules: A denotes an atomic concept, and if C and D are any
(atomic or composite) concepts, then so are :C (negation),
C u D (conjunction), C t D (disjunction), and C ! D
(implication).

� Value restriction and existential quantification, based on roles,
are concept descriptions that extend the set of basic concept
descriptions. A value restriction 8R:C restricts the value of role
R to elements that satisfy concept C. An existential quantification
9R:C requires the existence of a role value.

� Quantified roles can be composed, e.g. 8R1:8R2:C is a concept
description since 8R2:C is one.

These combinators can be defined using their classical set-the-
oretic interpretations. Given a universe of values S, we define the
model-based semantics of concept descriptions as follows:1

>I ¼S

?I ¼ ;
ð:AÞI ¼ S n AI
1 Combinators u and ! can be defined based on t and : as usual.
ðC u DÞI ¼ CI \ DI

ð8R:CÞI ¼ fa 2 Sj8b 2 S:ða; bÞ 2 RI ! b 2 CIg
ð9R:CÞI ¼ fa 2 Sj9b 2 S:ða; bÞ 2 RI ^ b 2 CIg

An individual x defined by CðxÞ is interpreted by xI 2S with xI 2 CI .
Structural subsumption is a relationship defined by subset inclu-
sions for concepts and roles.

� A subsumption C1 v C2 between two concepts C1 and C2 is
defined through set inclusion for the interpretations CI

1 # CI
2.

� A subsumption R1 v R2 between two roles R1 and R2 holds, if
RI

1 # RI
2.

Structural subsumption (subclass) is weaker than logical sub-
sumption (implication), see [3]. Subsumption can be further char-
acterised by axioms such as the following for concepts C1 and
C2 : C1 u C2 v C1 or C2 ! C1 implies C2 v C1. The expression
C1 � C2 represents equality.

The concept descriptions can be mapped to a predicate logic,
which clarifies the reasoning capabilities of the approach. A con-
cept C can be thought of as a unary predicate CðxÞ for a variable
x and roles R as binary predicates Rðx; yÞ, i.e. concept descriptions
like 9R:C are mapped to 9y:Rðx; yÞ ^ CðxÞ.
3. Modelling architectural styles

3.1. The basic architectural style ontology

The ALC language shall now be used to define an architectural
style ontology, thus providing a type and constraint language for
ADLs. The central concepts in this ontology are configuration, com-
ponent, connector, role, and port types – all of which are derived
from a general concept called an architectural type that captures
all architectural notions. These are the elementary architectural
types. The architectural types configuration, component and con-
nector are at the core of style definitions [32]. Ports and roles are
used in a range of ADLs such as ACME, Darwin, Wright or AADL.
Components encapsulate computation and connectors represent
communication between the components. Components can com-
municate through ports. Connectors connect to other components
through connectors via their ports, where each port plays a specific
role in the context of a connector. Configurations are compositions
of components and connectors with their ports and roles. Often, a
provided and a required port interface is distinguished to add a
direction to connectors, which can be clarified in terms of roles.
Ports enhance component descriptions and roles enhance connec-
tor descriptions.

This vocabulary consisting of five elements needs to be con-
strained in the ontology in order to ensure the desired semantics:

ArchType v Configuration t Component t Connector t Role t Port

and

Configuration � 9hasPart:ðComponent t Connector t Role t PortÞ
Component � ArchType u 9hasInterface:Port

Connector � ArchType u 9hasEndpoint:Role

The roles hasPart, hasEndpoint and hasInterface are part of the basic
vocabulary. The hasPart role will be defined formally later on. The
other two represent structural links from connectors to roles and
from components to their ports; they ensure that roles and ports
are associated to the core architectural types. This vocabulary of
types can be extended to add further elements using the same
mechanisms based on subsumption and concept descriptions.

C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749 1741
3.2. Defining architectural styles

Defining architectural styles is actually done by extending the
basic vocabulary of elementary architectural types. The subsump-
tion relationship serves to introduce specific types that form an
architectural style.

3.2.1. The pipe-and-filter architectural style
The specification of architectural styles shall be illustrated using

the pipe-and-filter style. We start with an extension of the hierar-
chy of elementary architectural types in order to introduce style-
specific components and ports:

PipeFilterComponent v Component

PipeFilterConnector v Connector

PipeFilterPort v Port

These new elements shall be further detailed and restricted to ex-
press their connector semantics. Three types of pipe–filter compo-
nents, DataSource, DataSink and Filter, shall be distinguished. Their
respective connectivity through input and output ports is defined
as follows:

DataSource �6 1hasPort u 9hasPort:Output

DataSink �6 1hasPort u 9hasPort:Input

Filter �¼ 2hasPort u 9hasPort:Input u 9hasPort:Output

DataSource, DataSink, and Filter are defined as components of a pipe-
and-filter architectural style. We assume Input and Output to be de-
fined as ports. Each of these components is characterised through
the number and types of component ports using so-called predicate
restrictions on a numerical domain (for instance, 6 n and ¼ n are
used to express hasPort:ðnjn 6 1Þ for a non-negative integer n) and
the usual concept descriptions (such as hasPort). In addition to these
more structural conditions that define the connections between the
component types, a number of classification constraints shall be
formulated that further refine the initial enumeration of pipe-
and-filter components by describing how subtype classification is
applied.

� Disjointness requires the individual components to be truly
different:

DataSouce u DataSink u Filter �?

� Completeness requires pipe-and-filter components to be made
up of only the three specified types:

PipeFilterComponent � DataSource t DataSink t Filter

Similarly, we can define disjointness Input u Output �? and
completeness PipeFilterPort � Input t Output for ports.
3.2.2. The hub-and-spoke architectural style
In addition to the well-known pipe-and-filter style [1,10], we

introduce another architectural style, the hub-and-spoke style.
This style abstracts a system that manages a composition from a
single location, the hub, which is normally the participant initiat-
ing the composition. The composition controller (the hub) is usu-
ally remotely accessed by the participants (the spokes). This is
the most popular and usually default distribution configuration
for service compositions. We would specify:

Hub v Component and Spoke v Component

with suitable completeness and disjointness constraints. The
expressions

Hub � 9hasPort:Input and Spoke � 9hasPort:Output
explain that hubs receive incoming requests from spokes. Further
constraints could limit the number of hubs to one:

HubSpokeConfiguration �¼ 1hasPart:Hub

with HubSpokeConfiguration v Configuration, whereas spokes can be
instantiated in any number. A standard connector, called Hub–
Spoke, with Hub—Spoke v Connector connects hubs and spokes.

3.3. Architectural styles and architecture modelling

So far, we have addressed specifications of architectural proper-
ties at the architectural type level. These specifications are con-
straints that apply to concrete architecture descriptions
formulated using the defined architectural types. The question is
how these type-level specifications are applied to act as architec-
tural styles. An instantiation of these type-level properties, i.e. an
architecture, could be described by instantiating the elementary
types only, fully ignoring any style-specific constraints. Thus, a
specification of architectural properties is not what we would com-
monly see as an architectural style. The configuration type matches
what an architectural style needs to express. It defines a specific
vocabulary of components and other elements and their con-
straints. Therefore, we define an architectural style to be a subtype
(subsumption) of the configuration type.

PipeFilterStyle v Configuration

PipeFilterStyle � 9hasPart:ðPipeFilterComponent

t PipeFilterConnector t Role t PortÞ

This is, together with related concept descriptions, a style defini-
tion. What clearly identifies a style is the configuration subtype that
acts as a root of the style definition. An architecture description
conforming to an architectural style is a subtype of the defined style
configuration, e.g. PipeFilterStyle. All elements linked to the style (or
its subtypes) directly or transitively through hasPart and the other
predefined roles can be used to describe an architecture. Generally,
styles are defined through existential quantification. This is consis-
tent with the aim of supporting the composition and hierarchies of
styles. Architectures can belong to several styles.

A distinguishing property of our approach is that the basic
architecture vocabulary with notions like component or connector
is defined with the same mechanism at the same layer as the archi-
tectural styles. The basic architectural style ontology itself is con-
sequently an architectural style, albeit an abstract and
unconstraining one – with the trivial equality as the required
subsumption.

The styles defined based on the ontology aim to provide a type
language for architecture definitions. Components in an architec-
ture definition are instances of the elements of an architectural
style. The style constrains the use of the architecture elements.
This architecture layer – the instances layer in terms of our ontol-
ogy – shall not be addressed here. Instead we will demonstrate
how the framework is independent of specific ADLs in Section 6.
It can be applied to general ADLs as a style sublanguage. It is not
our aim to define yet another ADL.

4. Relating architectural styles

Each architectural style is defined by a separate specification as
an extension of the basic ontology of elementary architecture ele-
ments. In order to reuse architectural styles as specification arte-
facts, these styles are often related to each other, e.g. to be
compared to each other or to be derived from another [8]. Different
styles can be related based on ontology relationships. We give an
overview of the central operators renaming, restriction, union,
intersection and refinement and define the semantics of this oper-

1742 C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749
ator calculus. Instead of general ontology mappings, we introduce
a notion of a style specification and define style comparison and
development operators on it.

4.1. Style syntax and semantics

Before defining the operators, the notions of architecture spec-
ification and styles and their semantics need to be made more pre-
cise. We assume a style to be a specification Style ¼ hR;Ui based on
the elementary type ontology with

� a signature R ¼ hC;Ri consisting of concepts C and roles R,
� concept descriptions / 2 U based on R.

Style is interpreted by a set of models M. The model notion [18]
refers to algebraic structures that satisfy all concept descriptions /
in U. The set M contains algebraic structures m 2 M with

� sets of objects CI for each concept C,
� relations RI # CI

i � CI
j for all roles R : Ci ! Cj

such that m satisfies the concept description. This satisfaction rela-
tion is defined inductively over the connectors of the description
logic ALC as usual [18,3].

The combination of two styles should be conflict-free, i.e.
semantically, no contradictions should occur. A consistency condi-
tion can be verified by ensuring that the set-theoretic interpreta-
tions of two styles S1 and S2 are not disjoint, SI

1 \ SI
2–;, i.e. their

combination is satisfiable and no contradictions occur.
Note, that this calculus of operators is not strictly an algebra in

terms of styles – only in terms of specifications. A resulting speci-
fication can be defined as a style by identifying a new root
configuration.

4.2. Renaming

Style development might require syntactical elements to be re-
named. A renaming operator can be defined elementwise for a gi-
ven signature R. By providing mappings for the elements that
need to be modified, a new signature R0 is defined:

R0 ¼ R n1#n01; . . . ;nm#n0m
� �

for all names of concepts or roles ni ði ¼ 1; . . . ;mÞ of R that need to
be modified.

4.3. Restriction

While often architectural styles are used unchanged in combina-
tions and relationships, it is sometimes desirable to focus on specific
parts, before for instance refining an architectural style. Restriction
is an operator that allows architectural style combinations to be cus-
tomised and undesired elements (and their properties) to be re-
moved. A restriction, i.e. a projection, can be expressed using the
restriction operator hR;UijR0 for a specification, defined by

hR;UijR0 ¼
def hR \ R0; f/ 2 Ujrlsð/Þ 2 rlsðR \ R0Þ ^ cptsð/Þ

2 cptsðR \ R0Þgi

with the usual definition of role and concept projections rlsðRÞ ¼ R
and cptsðRÞ ¼ C on a signature R ¼ hC;Ri. Restriction preserves con-
sistency as constraints are, if necessary, removed.

4.4. Intersection and union

Adding elements of one style to another (or removing specific
style properties from a style) is often required. Union and intersec-
tion deal with these situations, respectively. Two architectural
styles S1 ¼ hR1;U1i and S2 ¼ hR2;U2i shall be assumed.

� The intersection of S1 and S2, expressed by S1 \ S2, is defined by

S1 � S2 ¼def hR1 \ R2; ðU1 [U2ÞjR1\R2
i

Intersection is semantically defined based on an intersection of
style interpretations, achieved through projection onto common
signature elements.
� The union of S1 and S2, expressed by S1 [S2, is defined by

S1 þ S2 ¼def hR1 [R2;U1 [U2i

Union is semantically defined based on a union of style
interpretations.

In the case of fully different architectural styles, their intersec-
tion results in the elementary architecture types and their proper-
ties. Both operations can result in consistency conflicts.

4.5. Refinement

Consistency is a generic requirement that should apply to all
combinations of architecture ontologies. A typical situation is the
derivation of a new architectural styles from an existing one [5].
The refinement operator that we are going to introduce is a consis-
tent derivation. Refinement can be linked to the subsumption rela-
tion and semantically constrained by an inclusion of
interpretations, i.e. the models that interpret a style. Refinement
carries the connotation of preserving existing properties, for in-
stance the satisfiability of the original style specification. In this
terminology, the pipe-and-filter style is actually a refinement of
the basic architectural type vocabulary. As the original types are
not further constrained, the extension is consistent.

An explicit consistency-preserving refinement operator shall be
introduced to provide a constructive subsumption variant that
allows

� new subconcepts and new subrelationships to be added,
� new constraints to be added if these apply consistently to the

new elements.

Assume a style S ¼ hR;Ui. For any specification hR0;U0i with
R \ R0 ¼ ;, we define a refinement of S by hR0;U0i through

S� hR0;U0i ¼def hRþ R0;UþU0i

The precondition R \ R0 ¼ ; implies U uU0 ¼?, i.e. consistency is
preserved. In this situation, existing properties of S ¼ hR;Ui would
be inherited by S� hR0;U0i. Existing relationships can in principle
be refined as long as consistency is maintained – which might re-
quire manual proof in specific situations that go beyond the opera-
tor-based application.

4.6. Architectural style development

The main aim of these operators is to support the development
of architectural styles. We imagine a catalogue of styles, for exam-
ple similar to those developed for design patterns, that is used by
the software architect to describe architectures.

� The operator calculus allows individual styles from the cata-
logue to be compared. For instance, two styles can be united
to test if the set of concepts they describe overlap. The consis-
tency condition is used for this test.

� An existing style can be adapted. Refinement allows to add fur-
ther elements and constraints, making the style more specific.

C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749 1743
Styles can also be made more general by removing constructs
and properties through restriction.

The hub-and-spoke style, which might be included in the cata-
logue, shall be extended using the refinement operator. The idea is
to add a broker component, which spokes would initially contact
and which would assign a hub to them.

BrokeredHubSpokeStyle � HubSpokeStyle� hR;Ui

where the signature R is defined by

hfBrokerComponent;BrokerSpokeConnector;BrokerHubConnector;

HubRegistrationRole; SpokeAllocationRoleg; fgi

and the properties U are defined by

BrokerComponent � HubSpokeComponent u 9hasInterface:Port

BrokerSpokeConnector � HubSpokeConnector

u 9hasEndpoint:SpokeAllocationRole
BrokerHubConnector � HubSpokeConnector

u 9hasEndpoint:HubRegistrationRole

We would automatically get BrokeredHubSpokeStyle v
HubSpokeStyle as a consequence of the application of the
refinement.
5. Composite elements in architectural styles

An explicit support for composition is an important element of
conceptual modelling languages. Composition is also central for
software architectures. As an extension, we introduce three types
of composite elements for architectural style specifications.

5.1. Architectural composition principles

Subsumption is usually the central relationship in ontology lan-
guages, which allows concept taxonomies to be defined in terms of
subtype or specialisation relationships. In the wider context of con-
ceptual modelling, composition is another fundamental relation-
ship that focuses on the part–whole relationship between
concepts or objects. In ontology languages, subsumption is well
understood and well supported. Composition is less often used in
ontological modelling languages [3].

The notion of composition is applied in the context of software
architectures in two different ways:

� Structural composition. Structural hierarchies of some architec-
tural elements define an important aspect of architectures.
Structural composition can be applied to components and
configurations.

� Sequential composition. Dynamic elements can be composed to
represent sequential behaviour. Connectors are usually seen as
dynamically oriented architectural elements.

� Behavioural composition. Extending the idea of sequential com-
position, a number of behavioural composition operators includ-
ing choice and iteration are introduced to describe interaction
behaviour.

We use the symbol ‘‘.” to express the composition relationship.
Composition is syntactically used in the same way as subsumption
‘‘v” to relate concept descriptions.

� Component and configuration hierarchies shall consist of unor-
dered subcomponents, expressed using the component compo-
sition operator ‘‘.”. An example is Configuration . Port, meaning
that a Configuration consists of Ports as parts. This is actually a
reformulation of the previously used hasPart relationship. In
order to provide this with an adequate semantics, components
and configurations are interpreted by unordered multisets.

� Connectors can be sequences or complex behaviours that consist of
ordered process elements, again expressed using the composi-
tion operator ‘‘.”. An example is Connector . Transformation,
meaning that Connector is actually a composite process, which
contains for instance a Transformation element. We see compos-
ite connector implementations as being interpreted as ordered
tuples providing a notion of sequence. For more complex behav-
ioural compositions, graphs serve as models to interpret this
behaviour.

Composition shall only be applied to components, configura-
tions and connectors. The other architectural elements, i.e. ports
and roles, are atomic. Although internal structuring of ports can
be imagined by providing operations, hierarchies, as we intend to
build them through the composition construct, are not necessary
for ports.
5.2. Basic architectural composition

The composition construct is based on the operator ‘‘.”. We
introduce two basic syntactic forms, before looking at behavioural
composition as an extension of sequential composition in the next
subsection:

� The structural composition between concepts C and D is defined
through C . fDg, i.e. C is structurally composed of D if
typeðCÞ ¼ typeðDÞ ¼ Component _ Configuration.

� The sequential composition between concepts C and D is defined
through C . ½D�, i.e. C is sequentially composed of D if
typeðCÞ ¼ typeðDÞ ¼ Connector.

Note, that the composition operators are specific to the respec-
tive architecture element. We can allow the composition type
delimiters, i.e. {. . .} and [. . .], to be omitted if the type of the
part–element D is clear from the context.

This basic format that distinguishes between the two composi-
tion types shall be complemented by a variant that allows several
parts to be associated to an element in one expression.

� The structural composition C . fD1; . . . ;Dng is defined by
C . fD1g u � � � u C . fDng. The parts Di; i ¼ ð1; . . . ;nÞ are not
assumed to be ordered.

� The sequential composition C . ½D1; . . . ;Dn� is defined by
C . ½D1� u � � � u C . ½Dn�. The parts Di with i ¼ ð1; . . . ;nÞ are
assumed to be ordered with D1 6 � � � 6 Di 6 � � � 6 Dn prescribing
an execution ordering 6 on the Di.

The intended semantics of the two composition operators shall
now be formalised. So far, models m 2 M are algebraic structures
consisting of sets of objects CI for each concept C in the style signa-
ture and relations RI # CI � CI for roles R. We now consider objects
to be composite:

� Structurally composite concepts C . fD1; . . . ;Dng are interpreted
as multisets CI ¼ DI1

1 ; . . . ;DIk

1 ; . . . ;DI1

n ; . . . ;DIl

n

n on o
. We allow mul-

tiple occurrences for each concept Di ði ¼ 1; . . . ;nÞ that is a part
of concept C. With c 2 CI we denote set membership.

� Sequentially composite concepts C . ½D1; . . . ;Dn� are interpreted
as tuples CI ¼ DI

1; . . . ;DI
n

h i
. Tuples are ordered collections of

sequenced elements. In addition to membership, we assume
index-based access to these tuples in the form
CIðiÞ ¼ DI

i ði ¼ 1; . . . ;nÞ, selecting the ith element in the tuple.

1744 C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749
This means that while subsumption as a relationship is defined
through subset inclusion, composition relationships are defined
through membership in collections (multisets for structural com-
position and tuples for behavioural composition).
5.3. Behavioural composition

The introduction of behavioural specification depends in our
approach on the composition operator applied to connectors. This
operator allows us to refine a connector and specify detailed
behaviour. While a basic from of behaviour in the form of sequenc-
ing has been defined above, we now introduce a more comprehen-
sive approach that requires a more complex semantic model
(graphs).

Connectors were originally defined as atomic concepts, ex-
plained in terms or their endpoints: Connector � 9hasEndpoint:
Role where Role refers to a component. We now define a connector
C through a behavioural specification: C . ½B� where B is a behav-
ioural expression consisting of

� a basic connector C or
� a unary operator ‘!’ applied to a behavioural expression !B,

expressing iteration, or
� a binary operator ‘+’ applied to two behavioural expressions

B1 þ B2, expressing non-deterministic choice, or
� a binary operator ‘;’ applied to two behavioural expressions

B1 ; B2, expressing the previously introduced sequencing.

In line with the basic forms of composition:

� the iteration C . ½!B� is defined by C . ½B; . . . ;B�
� the choice C . ½B1 þ B2� is defined by C . ½B1� t C . ½B2�
� the sequence C . ½B1 ; B2� is defined as in Section 5.2

We extend the semantics by interpreting behaviourally com-
posite connectors through graphs ðN; EÞ where connectors are rep-
resented by edges e 2 E and nodes n 2 N represent connection
points for sequence, choice and iteration. The three operators are
defined through simple graphs: ðfn1;n2g; fðn1;n2ÞgÞ for a sequence,
ðfng; fðn;nÞgÞ for an iteration, and for choice we define
ðfn1;n2;n3; n4g; fðn1;n2Þ; ðn2;n4Þ; ðn1;n3Þ; ðn3;n4ÞgÞ.
ACME

styles

architectures

processes

UML/OCL

classes

constraints

Architectural Style
Ontology

Architecture
Profile

UML
Metamodel

extends

defines

generate
development

semantics
and

reasoning

WSMO

interface

capabilities

extends

Fig. 1. Application of the architectural style ontology to ACME, UML and WSMO.
5.4. Modelling with architectural composition

The composition relationship replaces the previous hasPart
predicate. As hasPart was only informally defined, this formalisa-
tion through . provides a more sound and rigorous definition of
the style ontology. These definitions prescribe properties of the
respective elements to provide enhanced built-in support in the
architecture ontology for architecture-specific modelling tasks.
The formal definition allows to check for instance the consistency
of compositions in terms of the types of the constituent parts.

We can now replace the previous definition of Configuration in
the based style ontology

Configuration � 9hasPart:ðComponent t Connector t Role t PortÞ

by the equivalent, formally defined

Configuration . fComponent;Connector;Role; Portg

Similar to previous definitions, disjointness or completeness prop-
erties are not entailed.

Structural compositions allow multiple occurrences of instances
of each component element. This can, however, be restricted using
the predicate restrictions as discussed earlier. Predicate restric-
tions can be combined with composition. For instance,
SimpleStyle . 6 5fComponentg

would limit the number of component types in a simple style to 5 –
other types are not constrained.

Behavioural composition can express simple interaction proto-
cols that connects implement:

InteractProcess . ½LogIn; !ðActiv ity1 þ Activity2Þ; LogOut�

which describes an interaction process along a connector between
two components consisting of a login and iteratively selecting one
of two possible activities, before logging out.

6. Integration with architecture description languages

Our objective is not to define yet another ADL. Instead, we aim
to define a versatile architectural style language that can be com-
bined with existing ADLs for a variety of reasons:

� to semantically define an existing style language and to allow
reasoning about style refinement, style instantiation and com-
position within this semantic framework,

� to provide an ADL-independent style language that can be added
to ADLs that do not have an explicit notion of styles,

We have summarised some possible application scenarios in
Fig. 1. We discuss the architectural description language ACME in
this section to illustrate the benefits. We look at ACME (and ACME
Studio as its supporting development environment) in more detail
to demonstrate the applicability of our formal framework in this
important scenario. We use the architectural style ontology to for-
mally define the ACME style language. Later on, in the discussion
section, we also look at UML and at service ontologies like WSMO.

6.1. ACME and architectural styles

ACME is an ADL that supports the component and connector
view on architectures [10]. For that purpose, a basic set of architec-
ture elements is introduced. These include the same five terms that
we have defined as the core vocabulary of our style ontology.
ACME provides specific support to define architectural styles. The
basic architecture elements such as component or connector are
supported by a type language that introduces these a basic types.
A style, called a family in ACME, is then a collection of constrained
type definitions. Invariants can be expressed using a constraint
language based on properties. Properties in ACME are name–value
pairs. ACME does not provide native support for the interpretation
these properties and invariants. Our style ontology provides a for-
mal reasoning framework through its underlying description logic.

C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749 1745
Our architectural style ontology can provide a standard seman-
tics for ACME styles. Due to the syntactic equality of the elemen-
tary types in the style vocabulary, a mapping from ACME into
our ontological framework can easily be defined. The intended
semantics of ACME types matches the formal semantics we have
introduced here. This has the following benefits for ACME:

� The ACME type language is formally defined through the archi-
tectural style ontology.

� A framework for the analysis and reasoning about styles and
their properties is introduced.

� The operator calculus enriches the mechanisms to develop
architectural styles effectively and consistently for ACME and
its support environment.

The architectural styles can be defined using an ontology edit-
ing tool such as Protégé. The styles can be exported into ADML,
the Architecture Description Markup Language, which a standard
XML-based mark-up language for describing software and system
architectures that can be imported by ACME Studio. Both tools
are open platforms and allow the integration of plugins.

6.2. Ontological definition of ACME architectural style elements

An architectural style (family) in ACME consists of component
type definitions containing ports and related properties and con-
nector type definitions containing roles and related properties plus
invariants. A system in ACME is an architecture specification,
which instantiates a family.

ACME families can be directly defined in terms of our architec-
tural style ontology. The basic vocabulary elements that we have
introduced in the ontology – configuration, component, connector,
port, role – are motivated by ACME and directly reflect the in-
tended ACME semantics. Thus, ACME elements can be formally de-
fined in terms of their architectural style ontology (ASO)
counterparts:

configurationACME ::¼ configurationASO

componentACME ::¼ componentASO

connectorACME ::¼ connectorASO

partACME ::¼ partASO

roleACME ::¼ roleASO

ACME Studio imports a style ontology as an architectural type using
ADML as the interchange format.

6.3. Ontological style-based ACME architecture specification

The following ACME specification describes an integration
architecture for application services AS in a heterogeneous envi-
ronment, which process data from different sources (data source
providers DS) and which require the data consumed by them to
be mediated by a separate, central mediation engine ME. The medi-
ator ME is an intermediary between application services as data
consumers and data servers as data providers whose aim is the
integration of data formats. The specification consists of compo-
nents, connectors and attachments. The attachments associate
component ports with the respective connectors and the roles they
play.

System IntegrationArchitecture : HubSpokeStyle = {
Component AS : Spoke = {

Ports {In,Out} };
Component ME : Hub = {

Ports {AS-In,AS-Out,DS-In,DS-Out} };
Component DS : Spoke = {
Ports {In,Out} };
Connector AS–ME : Hub–Spoke = {

Roles {requestIntegr,provideIntegr} };
Connector ME–DS : Hub–Spoke = {

Roles {requestData,provideData} };
Attachments = {

AS.Out to AS–ME.requestIntegr; ME.AS-In to AS–
ME.requestIntegr;

ME.AS-Out to AS–ME.provideIntegr; AS.In to AS–
ME.provideIntegr;

ME.DS-Out to ME–DS.requestData; DS.In to ME–
DS.requestData;

DS.Out to ME–DS.provideData; ME.DS-In to ME–
DS.provideData}
}

This specification instantiates the HubSpokeStyle defined earlier
on in Section 3.2.2. The mediator engine ME is defined as the cen-
tral hub and the application services and the data servers are the
spokes that all communicate with the mediation hub. As a conse-
quence of applying the style, for instance the uniqueness property
of the mediator (there can only be one in an architecture imple-
mentation) is automatically inherited through instantiation.

Hub-and-spoke architectures are often implemented in the
form of services. As part of our development environment, we have
implemented a transformation tool that converts ACME architec-
tures into Web service implementations by creating WSDL service
descriptions and executable WS-BPEL service processes.

It should be noted that an architecture is often not uniquely
associated to a particular style, such as the association of the Inte-
grationArchitecture system above to the hub-and-spoke style. For
instance, we can also identify the pipe-and-filter style in the archi-
tecture. Data server DS, mediation engine ME and application ser-
vice AS can act as source, filter and sink, respectively. While we
feel the hub-and-spoke structure is the primary architectural char-
acteristic of the integration architecture, other characteristics such
as pipe-and-filter aspects could be modelled by refining the hub-
and-spoke style. We will illustrate this principle in Section 6.5.

6.4. Ontological reasoning for ACME architectural styles

As ACME does not provide any native support for its property
and invariant sublanguages, the primary practical benefit of the
formal definition of ACME styles in Section 6.2 is that reasoning
about properties is now defined and enabled within the language.

In general, architectures inherit properties from the style spec-
ifications they are derived from:

� Structural aspects such as disjointness and completeness prop-
erties can be inherited and do not need to be specified explicitly.

� Logical properties described in styles can be verified in order for
benefits to be guaranteed. The uniqueness of the hub is an
example.

An ACME invariant

Forall r : RolejTypeðr; ProviderÞ

that constrains a connector role to be of a particular type, Provider,
is defined by its equivalent description logic formula in the archi-
tectural style ontology

Role � 8Type:Prov ider

that uses a Type property to associate a Provider concept. The role
variable r is implicit in the ontology formulation.

While this only formalises the definition of ACME invariants
and enables automated reasoning, more advanced forms of reason-

1746 C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749
ing are also possible if our style ontology is extended. The consis-
tency of data processing can be verified, if connectors for instance
provide data type information for source and provider. This can be
used to verify the correctness of connections in terms of data that
is provided and required. The notion of connectors and ports would
need to be extended to capture data aspects in a type concept –
predefined data property roles in the ontology would serve this
purpose. Protégé plugins such as JessTab and SWRLTab allow rules
to be defined and executed in the respective languages (Jess,
SWRL) that implement the style constraints.

The potential of reasoning could even be extended, if, as dis-
cussed later in Section 7.2, process-like behavioural connector
specifications is possible. Then, reasoning about connector behav-
iour in a modal logic style would be possible [27,25].
6.5. ACME architectural style development

We have used the hub-and-spoke style to provide a type lan-
guage for the specification of the integration architecture system
above. This architecture specification itself describes architectural
properties common to a large number of systems, in this case
mediator architectures [31]. This would merit a representation of
the integration architecture as a separate architectural style. We
develop this style by refining the hub-and-spoke style.

IntegrationArchitectureStyle � HubSpokeStyle� ðR;UÞ

where signature R and semantic properties in U have to be deter-
mined by the software architect. This exercise shall illustrate the
benefit of formally supported architectural style development using
our calculus for an ADL such as ACME.

Overall, the hub-and-spoke style shall be refined into an inte-
gration architecture style (using the refinement operator) as
follows:

� Renaming of some of the hub-and-spoke elements to reflect
the specific context of information integration: the hub is
replaced by the mediation engine and the application servers
are spokes.

� Addition of two new components, both of which are spokes and
therefore do not violate the uniqueness constraint for the hub
that is inherited using the refinement operator:
– DS as a spoke, which represent the data servers already used

in the ACME architecture specification in Section 6.3,
– IE as a spoke, which is the integration engine that separates

the actual execution of the integration from the coordination
of the mediation in ME – this component is an extension of
the previous ACME specification.

� Addition of new connectors and connectivity (the latter in the
form of attachments), in particular to connect the newly added
components using the connectors ME–DS and ME–IE, whereby
the integration engine IE should be an extension of the hub func-
tionality, here expressed using a uniqueness property on the
connector between ME and IE.

� Addition of new (invariant) disjointness and completeness
properties.

In the first step, renaming would be carried out using

R0 ¼ R½Hub # ME; Spoke # AS�

The extension element ðR0;UÞ for the refinement operator, after
renaming hub and spoke, would comprise the signature R0:

f Components ¼ fDS; IEg;
Connectors ¼ fME	 DS;ME	 IEg g

and the concept descriptions U:
f instancesðME		IEÞ 6 1
AS tME t DS t IE ¼ IntegrationArchitecture;

AS uME u DS u IE ¼ ; g

We assume here a built-in operator instances to formulate the
uniqueness property for the ME–IE connector. Consistency is here
preserved and we would get IntegrationArchitectureStyle v
HubSpokeStyle.

Using the refinement operator �, the properties of the original
hub-and-spoke style are preserved in the extension. The result of
the extension – here expressed as a family in terms of the ACME
notation – is the following:

Family IntegrationArchitectureStyle = {
Component Type AS = {

Ports {In,Out} };
Component ME = {

Ports {AS-In,AS-Out,DS-In,DS-Out, IE-In, IE-Out} };
Component DS = {

Ports {In,Out} };
Component Type IE={

Ports {ME-In,ME-Out} };
Connector AS–ME = {

Roles {requestInt,provideInt} };
Connector ME–DS = {

Roles {requestData,provideData} };
Connector Type ME–IE = {

Roles {requestTrans,provideTrans};
Invariant {instances(ME–IE) 6 1} };

Invariant {
AS tME t DS t IE = IntegrationArchitecture
AS tME t DS t IE = ;}

}

Clearly, this formulation resembles the earlier ACME architec-
ture specification as a system, only at the style level with further
constructs and semantical constraints added.

We also demonstrate now how the composition relationship .

can be used in this context. In order to detail the architectural style
even further, one of the components, the integration engine IE can
be presented as a composed component consisting of a connector
generator CG, which handles the communication with the media-
tion engine, and an execution engine XE:

IE . fCG;XEg

The new components CG and XE would be defined as follows

Component Type CG = {
Ports {ME-In,ME-Out,XE-In,XE-Out} };

Component Type XE = {
Ports {In,Out} };

Connector Type ME–CG = {
Roles {requestTrans,provideTrans};
Invariant {instances(ME–DS) 6 1} };

Connector Type CG–XE = {
Roles {requestExec,provideExec};
Invariant {instances(CG–XE) 6 1} }

6.6. Summary

In this section, we have applied our style ontology to ACME to
demonstrate the benefits such as

� giving formal semantics to previously only informally defined
style languages,

C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749 1747
� using enhanced reasoning capabilities arising from the formal
ontology framework, and

� developing a rich style catalog for architecture modelling.

ACME acts here as prototypical example of an ADL. Based on a
review of ACME families (the ACME term for styles), we have for-
malised ACME’s family sublanguage using our style ontology. Then,
we demonstrated the application of the ontology-based style lan-
guage in ACME. We illustrated the benefits of formally defined
property and invariant sublanguages for (ontology-based) reason-
ing. Finally, we showed how a range of predefined styles can be
developed using the style combinators we introduced. Behavioural
composition will be addressed in the next section in the context of
UML as the application language.
7. Discussion – language extensions and applicability

The architectural style framework we introduced consists of a
core ontological style description language, a style development
operator calculus and a composition technique. The central prop-
erty an evaluation needs to establish about our framework is its
suitability to enhance existing ADLs in terms of the benefits out-
lined in Section 6.6. We have demonstrated the suitability of the
style description and development language by applying it to ACME
as a formally defined style sublanguage in the previous section.

In this section, we discuss some other important aspects of our
style language – namely extensions in terms of explicit quality
links and advanced behavioural composition – in more detail.
ACME is only one possible application language. We will briefly
look at UML and WSMO as other, non-ADL application languages
of our approach in the context of these extensions.

7.1. Quality-driven architecture

The use of styles in architecture design implies certain proper-
ties of software systems, as these styles are abstractions of success-
fully implemented systems that are usually easy to understand, to
manage, or to maintain [12,13]. Non-functional quality aspects
ranging from availability, performance, and maintainability guar-
antees to costs are equally important functional aspects of compo-
nents and need to be captured explicitly to clearly state the quality
requirements. The reliability of a system, the availability of ser-
vices, and the individual component and overall system perfor-
mance are often crucial. Links between the styles of architectures
and quality properties of these systems have been observed [28,9].

A catalogue of architectural styles or patterns [6], consisting of
styles such as pipe-and-filter and hub-and-spoke, may be utilised
by software architects to build architectures that exhibit some de-
sired quality properties. Each of the styles in the catalogue is asso-
ciated with certain quality characteristics, that would be exhibited
during the deployment and execution of system compositions. The
ISO 9126 standard for software product quality to support the eval-
uation of software can serve as a starting point here that defines
quality attributes and metrics [16,15].

We illustrate this using an architectural style. Some of the
advantages of the hub-and-spoke architectural style in terms of
quality aspects are [6]:

� Composition is easily maintainable, as composition logic is all
contained at a single participant, the central hub.

� Low deployment overhead as only the hub manages the
composition.

� Composition can include externally controlled participants. Web
service technologies, for instance, would enable the reuse of
existing service components.
The main disadvantages of this architectural style are:

� A single point of failure at the hub provides poor reliability and
availability.

� A communication bottleneck at the hub results in restricted sca-
lability. SOAP messages have considerable overhead for message
deserialisation and serialisation.

� The high number of messages between hub and spokes is sub-
optimal.

The style ontology can be extended by a quality ontology to
capture a vocabulary of quality attributes and corresponding met-
rics using quality-specific properties.

HubSpokeStyle � 9hasAdvQual:ðMaintainable t LowOverhead

t ReusableÞ u 9hasDisadvQual:ð:Reliable

t :Scalable t :PerformantÞ

Further formalised descriptions such as the association of metrics,
for instance in the format Performant � 9hasMetric:ResponseTime,
are possible.

WSMO [19] is, like OWL-S [29], an ontology-based approach to
describing services. In the traditional understanding, these two are
not ADLs [22]. Their aim is to provide a vocabulary that allows the
description on functional and non-functional attributes of services
and their operations in terms of pre- and postconditions or quality
attributes. Nonetheless, looking at service ontologies helps us to
understand how quality attributes can be integrated into an archi-
tectural style-driven ADL. Services and their operations are the
concepts in WSMO (or OWL-S). Functionality information and
quality attributes in WSMO are categorised into interface (syntax)
and capability (semantics, quality) attributes and are described in
terms of properties in the ontology. Capability descriptions are
similar to our proposal for quality description above.

7.2. Advanced behavioural composition and application to UML

UML is often used to describe software architectures [4]. Class
diagrams define components and connections between compo-
nents through classes and associations. Additional constraints
can be added using the Object Constraint Language (OCL).

Architectural styles can be mapped to MOF meta-level models,
i.e. architectural style definitions correspond to the M2 level. The
elementary architectural types map directly to classes and their
associations in UML. Description logic can be translated to MOF
easily, thanks to the Ontology Definition Metamodel (ODM) [24],
which defines a number of MOF-based metamodels for a range of
modelling languages including description logics and UML and a
number of transformations between them. This reference frame-
work can be used to translate a given architectural style into a
MOF-compliant metamodel. The difficulty here is only that this
MOF metamodel is not necessarily UML-metamodel compliant.
This means that compliance can only be achieved by adapting
the standard transformation to define a suitable UML profile. The
problem is similar to the need to clearly identify a style and to
guarantee its correct application. The profile needs to provide
UML-compliant model elements that must only be used in a
style-conformant way.

UML activity diagrams provide a modelling framework to which
our behavioural composition can be applied. Sequence, iteration
and choice can be represented diagrammatically to express inter-
action processes between components. However, while modelling
behavioural composition as introduced here is often sufficient as
our application to ACME demonstrates, full process specifications
with interaction and data flow elements, however, cannot be ex-

1748 C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749
pressed in the notational format introduced here. Ontological sup-
port for the process combinators exists in description logics [3].
While this aspect of composition cannot be investigated here in de-
tail due to the complexity of a comprehensive process composition
solution in ontology languages [25], it is important to discuss the
benefits and also the potential of ontologies and description logics
to provide adequate language support for architectural behaviour
modelling.

Connectors can be processes that consist of ordered process ele-
ments, expressed using process composition operators such as se-
quence ‘‘;”, iteration ‘‘!”, and choice ‘‘+”. An example is to define
connector C as B1; B2, meaning that connector C is actually a pro-
cess sequence of connectors B1 and B2. While this example can
be expressed using our current composition notation C . ½B1;B2�,
data flow elements such as parameters are currently not intro-
duced. A different semantic model from the set-theoretic interpre-
tation we have used so far would allow the required semantical
support for complex process expressions.

An adequate solution to this problem lies in a different interpre-
tation of behaviour in architectural style definitions. If we consider
connectors as behavioural elements in terms of the architecture –
components also exhibit behaviour, but are considered here as
black boxes – then these connectors can and need to be defined dif-
ferently in the ontology language. Some proposals exist to interpret
computational elements through accessibility relations [3]. This
would mean

� to introduce a special form of roles for connectors that model
accessibility relations between static constructs with some
notion of state [25],

� to provide a rich role expression sublanguage for this new role
type consisting of operators such as sequence, iteration or choice
together with names to represent data [3].

These behavioural roles would complement the existing roles,
which are more descriptional and static in nature. The benefit of
this interpretation of behaviour is compatibility of behaviour rea-
soning with subsumption reasoning, as for instance refinement of
behaviour can be expressed through role subsumption.
8. Related work

Formalising architectural styles is the first step of understand-
ing their properties and the resulting impact on architectures
and software systems. A seminal paper in this context is [1]. A for-
mal framework based on the model-theoretic specification lan-
guage Z is given. Abowd et al. introduce the detailed formal
specification of architectural styles, e.g. for the pipe-and-filter
style. This work has started the integration of semantics into archi-
tectural descriptions. The description logic we have used here pro-
vides the same expressive power to formulate structural
architectural properties (we discuss the behavioural properties ad-
dressed by Abowd et al. below). The reason for choosing an onto-
logical approach in our case are pragmatic. An ontological
framework for this approach is a highly suitable candidate since
extension through subsumption is a natural choice to develop a
catalogue of styles. The existence of meta-level frameworks such
as the Ontology Definition Metamodel (ODM) with its predefined
transformations makes ontologies and their dynamic logic founda-
tions suitable as an interoperable notation that can be integrated
with existing ADLs. ODM with its predefined transformations can
be used to integrate our style ontology into other modelling lan-
guages defined within ODM (such as UML).

Architectural styles have been integrated in some ADLs, such as
ACME. Styles can also be considered in managing architectural evo-
lution. In [23], a graph grammar approach is used to capture archi-
tectural evolution. The suitability of ontological frameworks here
would need to be investigated further. The operator algebra for
style development we introduced, however, provides a starting
point to control change. Operators such as restriction and union
can be used to define elementary changes, on which more complex
changes can be described through operator composition.

Around the notion of an architectural style, similar abstractions
have emerged. In [17], a notion of an architectural scenario is used
to aid analyses in the design of architectures. Direct and indirect
scenarios are used to view software systems as information pro-
cessing software artefacts or to view these artefacts as subjects
in a change and evolution process, respectively. The dynamic nat-
ure of software architectures is emphasised in contrast to the more
static view of architectural styles and their application. A similar
argumentation is followed by Hirsch et al. [14]. Associating a sys-
tem to a single architectural style is often not sufficient. The notion
of a mode, similar to a scenario, is introduced. Modes can be chan-
ged through structural and evolution constraints, which aims to
support the self-organisation of service-based systems. The benefit
is here a higher degree of automation.
9. Conclusions

In addition to structural and behavioural properties of software
architectures, meta-level constructs such as architectural styles,
scenarios, or modes have recently received much interest in the
software architecture community. Architectural styles have
emerged as architecture abstractions that influence the quality of
architectures and their implementations. Architectural styles are
often also linked to platforms; middleware platforms often support
only specific styles by constraining interaction to synchronous or
asynchronous communication or by enforcing a client–server type
of architecture. In this context, architectural styles help to deter-
mine essential aspects of software systems.

Our approach ties in with current attempts to utilise Semantic
Web and ontology technology for software engineering – most
prominently within the Ontology Driven Architecture initiative
by the W3C. We use ontologies as a mechanism describe and for-
mally defined architectural styles. In terms of model-driven ap-
proaches, ontology-based architectural styles can be viewed as
abstracted architecture models, which complements previous
work [20,30]. The core of the contribution, however, is a founda-
tional framework that carries the specification approach further
into a comprehensive development calculus for styles.

Using an ontological, description logic-based setting for soft-
ware architecture has a number of benefits, such as a concise
and precise notation with formal semantics [1], an extensible type
language based on subsumption, composition and constraints [3],
and a style combination algebra based on ontology technologies.
The tractability of reasoning is a central issue for description logics.
The logic ALC that we have used for this architectural style ontol-
ogy is decidable [3], i.e. provides the basis for termination and reli-
able tool support.

In this paper, we have carried past work, such as [26], further to
incorporate composition into the development framework. We
also added a discussion of quality considerations in the context
of architectural styles. A significant extension is also the applica-
tion of the architectural style ontology presented here to architec-
ture specification and modelling approaches. Our discussion of
ACME, which is a recognised and widely used ADL, demonstrates
that the style ontology can provide a number of essential benefits,
which in the ACME case comprise a formal semantics with the rea-
soning support that is entailed, but also brings an important
dimension to ACME architecture modelling. The development of

C. Pahl et al. / Information and Software Technology 51 (2009) 1739–1749 1749
styles themselves based on a formalised operator calculus en-
hances reuse through abstraction. Behavioural composition adds
behaviour, which is often neglected in architectural description.

Overall, ontology mechanisms provide a suitable conceptual
modelling support, using a classical ontology approach. The nota-
tion is adequate, as the examples have demonstrated, to model
architectural styles. An ontology approach is also suitable as it pro-
vides two intrinsic benefits over other conceptual modelling ap-
proaches based on the subsumption relationship:

� firstly, easy extensibility and configurability of the style ontol-
ogy based on the operator calculus and the subsumption and
composition relations,

� secondly, modelling of meta-level style ontology vocabulary and
style-specific terms within one modelling layer.

While the notation is suited to formulate and relate architec-
tural styles focusing on structural aspects, the introduction of com-
posite element has demonstrated the lack of advanced process
modelling capabilities in the notation introduced here. Concepts
are not meant to model the details of data and control flow behav-
iour; using concepts to express structured processes is therefore
not an adequate solution. While an integration with service or pro-
cess ontologies is desirable, the seamless integration requires fur-
ther investigations.

References

[1] G. Abowd, R. Allen, D. Garlan, Formalizing style to understand descriptions of
software architecture, ACM Transactions on Software Engineering and
Methodology 4 (4) (1995) 319–364.

[2] R. Allen, D. Garlan, A formal basis for architectural connection, ACM
Transactions on Software Engineering and Methodology 6 (3) (1997) 213–249.

[3] F. Baader, D. McGuiness, D. Nardi, P.P. Schneider (Eds.), The Description Logic
Handbook, Cambridge University Press, 2003.

[4] F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers, J. Little, R. Nord, J. Stafford,
Documenting Software Architecture: Documenting Behavior, Technical Report
CMU/SEI-2002-TN-001, SEI, Carnegie Mellon University, 2002.

[5] L. Baresi, R. Heckel, S. Thöne, D. Varro, Style-based refinement of dynamic
software architectures, in: Proceedings of the 4th Working IEEE/IFIP
Conference on Software Architecture WICSA4, IEEE, 2004, pp. 155–164.

[6] R. Barrett, L.M. Patcas, J. Murphy, C. Pahl, Model driven distribution pattern
design for dynamic web service compositions, in: International Conference on
Web Engineering ICWE’06, Palo Alto, US, ACM Press, 2006.

[7] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed.,
SEI Series in Software Engineering, Addison-Wesley, 2003.

[8] C. Canal, E. Pimentel, J.M. Troya, Compatibility and inheritance in software
architectures, Science of Computer Programming 41 (2001) 105–138.

[9] V. Cortellessa, A. Di Marco, P. Inverardi, Software performance model-driven
architecture, in: SAC’06: Proceedings of the 2006 ACM Symposium on Applied
Computing, ACM Press, 2006, pp. 1218–1223.

[10] D. Garlan, B. Schmerl, Architecture-driven modelling and analysis, in: Tony
Cant (Ed.), Proceedings of the 11th Australian Workshop on Safety Related
Programmable Systems (SCS’06), Conferences in Research and Practice in
Information Technology, vol. 69, 2006.
[11] S. Giesecke, A method for integrating enterprise information systems based on
middleware styles, in: International Conference on Enterprise Information
Systems (ICEIS’06), Doctoral Symposium, INSTICC Press, 2006, pp. 24–37.

[12] S. Giesecke, W. Hasselbring, M. Riebisch, Classifying architectural constraints
as a basis for software quality assessment, Advanced Engineering Informatics
21 (2) (2007) 169–179.

[13] S. Giesecke, J. Bornhold, W. Hasselbring, Middleware-induced architectural
style modelling for architecture exploration, in: Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, IEEE Computer Society Press,
2007.

[14] D. Hirsch, J. Kramer, J. Magee, S. Uchitel, Modes for software architectures, in:
Third European Workshop on Software Architecture EWSA 2006, LNCS Series,
Springer-Verlag, 2006.

[15] ISO/IEC, Software engineering – product quality – Part 1: Quality model, June
2001, Published standard.

[16] H.-W. Jung, S.-G. Kim, C.-S. Chung, Measuring software product quality: a
survey of ISO/IEC 9126, IEEE Software 21 (5) (2004) 88–92.

[17] R. Kazman, S.J. Carriere, S.G. Woods, Toward a discipline of scenario-based
architectural evolution, Annals of Software Engineering 9 (1–4) (2000) 5–33.

[18] D. Kozen, J. Tiuryn, Logics of programs, in: J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science, vol. B, Elsevier, 1990, pp. 789–840.

[19] R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, D. Fensel, Web service
modeling ontology, Applied Ontology 1 (1) (2005) 77–106.

[20] C. Pahl, A conceptual architecture for semantic web services development and
deployment, International Journal of Web and Grid Services 1 (3/4) (2005)
287–304.

[21] J. Magee, N. Dulay, S. Eisenbach, J. Kramer, Specifying distributed software
architectures, in: W. Schäfer, P. Botella (Eds.), Proceedings of the 5th European
Software Engineering Conference (ESEC 95), vol. 989, Springer-Verlag, Berlin,
Sitges, Spain, 1995, pp. 137–153.

[22] N. Medvidovic, R.N. Taylor, A classification and comparison framework for
software architecture description languages, in: Proceedings European
Conference on Software Engineering/International Symposium on
Foundations of Software Engineering ESEC/FSE’97, Springer-Verlag, 1997, pp.
60–76.

[23] D.L. Metayer, Describing software architecture styles using graph grammars,
IEEE Transactions on Software Engineering 24 (7) (1998) 521–553.

[24] Object Management Group, Ontology Definition Metamodel – Submission
(OMG Document: ad/2006-05-01), OMG, 2006.

[25] C. Pahl, An ontology for software component matching, International Journal
on Software Tools for Technology Transfer (STTT), Special Edition on
Foundations of Software Engineering 9(2) (2007) 169–178.

[26] C. Pahl, S. Giesecke, W. Hasselbring, An ontology-based approach for modelling
architectural styles, in: First European Conference on Software Architecture
ECSA 2007, Lecture Notes in Computer Science, vol. 4758, Springer, 2007, pp.
60–75.

[27] K. Schild, A correspondence theory for terminological logics: preliminary
report, in: Proceedings of the 12th International Joint Conference on Artificial
Intelligence, Sydney, Australia. 1991.

[28] B. Spitznagel, D. Garlan, Architecture-based performance analysis, in:
Proceedings of the 1998 Conference on Software Engineering and Knowledge
Engineering (SEKE’98), June 1998.

[29] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, Automated discovery,
interaction and composition of semantic web services, Journal of Web
Semantics 1 (1) (2003) 27–46.

[30] C. Pahl, Layered ontological modelling for web service-oriented model-driven
architecture, in: European Conference on Model-Driven Architecture ECMDA
2005, LNCS, vol. 3748, Springer, 2005, pp. 88–102.

[31] G. Wiederhold, Mediators in the architecture of future information systems,
IEEE Computer 25 (1992) 38–49.

[32] R.N. Taylor, N. Medvidovic, E.M. Dashofy, Software Architecture: Foundations,
Theory, and Practice, Wiley, 2009.

	Ontology-based modelling of architectural styles
	Introduction
	Ontologies and description logic
	Modelling architectural styles
	The basic architectural style ontology
	Defining architectural styles
	The pipe-and-filter architectural style
	The hub-and-spoke architectural style

	Architectural styles and architecture modelling

	Relating architectural styles
	Style syntax and semantics
	Renaming
	Restriction
	Intersection and union
	Refinement
	Architectural style development

	Composite elements in architectural styles
	Architectural composition principles
	Basic architectural composition
	Behavioural composition
	Modelling with architectural composition

	Integration with architecture description languages
	ACME and architectural styles
	Ontological definition of ACME architectural style elements
	Ontological style-based ACME architecture specification
	Ontological reasoning for ACME architectural styles
	ACME architectural style development
	Summary

	Discussion – language extensions and applicability
	Quality-driven architecture
	Advanced behavioural composition and application to UML

	Related work
	Conclusions
	References

