Bubble momentum plume as a possible mechanism for an early breakdown of the seasonal stratification in the northern North Sea.

Nauw, Janine, Linke, Peter and Leifer, Ira (2015) Bubble momentum plume as a possible mechanism for an early breakdown of the seasonal stratification in the northern North Sea. Marine and Petroleum Geology, 68 . pp. 789-805. DOI 10.1016/j.marpetgeo.2015.05.003.

[thumbnail of Nauw et al 2015.pdf] Text
Nauw et al 2015.pdf - Published Version
Restricted to Registered users only

Download (7MB) | Contact

Supplementary data:

Abstract

The presence of a seasonal thermocline likely plays a key role in restraining methane released from a
seabed source in the deeper water column, thereby inhibiting exchange to the atmosphere. The bubble
plume itself, however, generates an upward motion of fluid, e.g. upwelling and may thereby be partially
responsible for an early breakdown of the seasonal thermocline. Measurements at site 22/4b, located at
(57°550N, 1°380E) in the UK Central North Sea, 200 km east of the Scottish mainland, where gas is still
being released since a blow out in 1990, have been used to identify the generation of the seasonal
thermocline, and thus, the depth of the upper mixed layer and its breakdown in autumn. Data derived
from two landers, containing an Acoustic Doppler Current Profiler and a Conductivity Temperature Depth
recorder, were used to determine the mixed layer depth and the breakdown of the thermocline. Mixing
of upper layer fluid into the lower layer has been inferred from large amplitude variations in the nearbottom
temperature.
The ADCPs estimate velocity profiles in four beam directions using Doppler shifted frequency from
acoustic pings sent out and received by four different transducers in a specific configuration. Besides that,
the intensity of the backscattered sound per transducer is also recorded. Bubbles from the nearby plume
contaminate the signal during part of the tidal cycle, but in bubble free periods, the mixed layer depth
can be estimated using the acoustic backscatter signal as local maxima. Results show that the thermocline
broke down between mid-October and early November, several weeks earlier than the breakdown
of the thermocline in nearby/comparable areas, likely caused by bubble-induced downwelling at the site.
The early breakdown of the thermocline was accompanied by multiple occurrence of a strong jet-like
structure, associated with the seasonal tidal mixing front.

Document Type: Article
Additional Information: WOS:000367631900009
Keywords: thermocline; stratification breakdown; bubble plume; ADCP ; NOORDHOEK PATHFINDER; RV Alkor; AL374
Research affiliation: OceanRep > The Future Ocean - Cluster of Excellence > FO-R07
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-MG Marine Geosystems
OceanRep > The Future Ocean - Cluster of Excellence > FO-R09
OceanRep > The Future Ocean - Cluster of Excellence
Refereed: Yes
Open Access Journal?: No
Publisher: Elsevier
Projects: Future Ocean
Expeditions/Models/Experiments:
Date Deposited: 14 Jan 2014 08:14
Last Modified: 10 Oct 2017 12:38
URI: https://oceanrep.geomar.de/id/eprint/23061

Actions (login required)

View Item View Item