OceanRep
On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?.
Couldrey, Matthew P., Oliver, Kevin I. C., Yool, Andrew, Halloran, Paul R. and Achterberg, Eric P.
(2016)
On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?.
Global Biogeochemical Cycles, 30
(5).
pp. 787-802.
DOI 10.1002/2015GB005267.
![]() |
Text
Couldrey.pdf - Published Version Restricted to Registered users only Download (2MB) | Contact |
Abstract
The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.
Document Type: | Article |
---|---|
Additional Information: | WOS:000379949100011 |
Keywords: | carbon flux; gas transfer velocity; carbon cycle; ocean model; climate dynamics; variability |
Research affiliation: | OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography OceanRep > The Future Ocean - Cluster of Excellence OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography > FB2-CH Water column biogeochemistry Kiel University |
Refereed: | Yes |
Open Access Journal?: | No |
Publisher: | AGU (American Geophysical Union), Wiley |
Projects: | Future Ocean |
Date Deposited: | 27 Jun 2016 09:13 |
Last Modified: | 23 Apr 2021 09:09 |
URI: | https://oceanrep.geomar.de/id/eprint/33261 |
Actions (login required)
![]() |
View Item |
![](/images/clear.gif)
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !