OceanRep
Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function.
Zidorn, Christian (2016) Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry, 124 . pp. 5-28. DOI 10.1016/j.phytochem.2016.02.004.
Full text not available from this repository.Abstract
Seagrasses are the only higher plants living in fully marine environments; they play a significant role in coastal ecosystems. Seagrasses inhabit the coastal shelves of all continents except Antarctica and can grow in depths of up to 90 m. Because of their eminent ecological importance, innumerous studies have been dedicated to seagrasses and their ecology. However, the phytochemistry has not been equally well investigated yet and many of the existing studies in chemical ecology are only investigating the chemistry at the level of compound classes, e.g. phenolics, and not at the level of chemically defined metabolites. In the present review, the existing literature on secondary metabolites of seagrasses, their known source seagrasses, their bioactivity, and ecological function are compiled and critically assessed. Moreover, research gaps are highlighted and avenues for future research are discussed. Currently, a total of 154 chemically defined natural products have been reported from the about 70 seagrass species known worldwide. Compounds reported include simple phenols derivatives (four compounds), phenylmethane derivatives (14 compounds), phenylethane derivatives (four compounds), phenylpropane derivatives including their esters and dimers (20 compounds), chalkones (four compounds), flavonoids including catechins (57 compounds), phenylheptanoids (four compounds), one monoterpene derivative, one sesquiterpene, diterpenoids (13 compounds), steroids (31 compounds), and one alkaloid. Most of the existing bioactivity studies of seagrass metabolites and extracts have been directed to potential cytotoxic, antimicrobial, or antimacrofouling activity. Antimicrobial studies have been performed towards panels of both human pathogens and ecologically relevant pathogens. In the antimacrofouling studies, investigations of the potential of zosteric acid from the genus Zostera are the most numerous and have yielded so far the most interesting results. Studies on the chemical ecology of seagrasses often have been focused on variation in phenolic compounds and include but are not limited to studies on variation due to abiotic factors, seasonal variation, variation in response to grazing by fish or sea urchins, or following microbial attack.
Document Type: | Article |
---|---|
Research affiliation: | Kiel University > Kiel Marine Science |
Refereed: | Yes |
Date Deposited: | 29 Jun 2017 08:46 |
Last Modified: | 01 Feb 2019 15:04 |
URI: | https://oceanrep.geomar.de/id/eprint/38655 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !