OceanRep
Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony calibration with a contemporaneous seawater phosphate record.
LaVigne, Michèle, Matthews, Kathryn A., Grottoli, Andréa G., Cobb, Kim M., Anagnostou, Eleni , Cabioch, Guy and Sherrell, Robert M. (2010) Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony calibration with a contemporaneous seawater phosphate record. Geochimica et Cosmochimica Acta, 74 (4). pp. 1282-1293. DOI 10.1016/j.gca.2009.11.002.
Text
LaVigne.pdf - Reprinted Version Restricted to Registered users only Download (465kB) |
Abstract
A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (PO4 SW) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panamá were strongly correlated to a contemporaneous time-series record of surface water PO4 SW at this site (r2 = 0.7–0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in ±0.2 and ±0.1 μmol/kg uncertainties in PO4 SW reconstructions from P. lobata and P. gigantea, respectively.
Inter-colony agreement in P/Ca response to PO4 SW was good (±5–12% about mean calibration slope), suggesting that species-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phosphate. However, offsets in the y-intercepts of calibration regressions among co-located individuals and taxa suggest that biologically-regulated “vital effects” and/or skeletal extension rate may also affect skeletal P incorporation. Quantification of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface water phosphate and regional calibration against documented local seawater phosphate variations.
Document Type: | Article |
---|---|
Keywords: | coral, P/Ca, seawater phosphate, multi-colony |
Refereed: | Yes |
Open Access Journal?: | No |
Publisher: | Elsevier |
Date Deposited: | 06 Mar 2018 12:28 |
Last Modified: | 06 Mar 2018 12:28 |
URI: | https://oceanrep.geomar.de/id/eprint/41305 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !