Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony calibration with a contemporaneous seawater phosphate record.

LaVigne, Michèle, Matthews, Kathryn A., Grottoli, Andréa G., Cobb, Kim M., Anagnostou, Eleni , Cabioch, Guy and Sherrell, Robert M. (2010) Coral skeleton P/Ca proxy for seawater phosphate: Multi-colony calibration with a contemporaneous seawater phosphate record. Geochimica et Cosmochimica Acta, 74 (4). pp. 1282-1293. DOI 10.1016/j.gca.2009.11.002.

[thumbnail of LaVigne.pdf] Text
LaVigne.pdf - Reprinted Version
Restricted to Registered users only

Download (465kB)

Supplementary data:

Abstract

A geochemical proxy for surface ocean nutrient concentrations recorded in coral skeleton could provide new insight into the connections between sub-seasonal to centennial scale nutrient dynamics, ocean physics, and primary production in the past. Previous work showed that coralline P/Ca, a novel seawater phosphate proxy, varies synchronously with annual upwelling-driven cycles in surface water phosphate concentration. However, paired contemporaneous seawater phosphate time-series data, needed for rigorous calibration of the new proxy, were lacking. Here we present further development of the P/Ca proxy in Porites lutea and Montastrea sp. corals, showing that skeletal P/Ca in colonies from geographically distinct oceanic nutrient regimes is a linear function of seawater phosphate (PO4 SW) concentration. Further, high-resolution P/Ca records in multiple colonies of Pavona gigantea and Porites lobata corals grown at the same upwelling location in the Gulf of Panamá were strongly correlated to a contemporaneous time-series record of surface water PO4 SW at this site (r2 = 0.7–0.9). This study supports application of the following multi-colony calibration equations to down-core records from comparable upwelling sites, resulting in ±0.2 and ±0.1 μmol/kg uncertainties in PO4 SW reconstructions from P. lobata and P. gigantea, respectively.
Inter-colony agreement in P/Ca response to PO4 SW was good (±5–12% about mean calibration slope), suggesting that species-specific calibration slopes can be applied to new coral P/Ca records to reconstruct past changes in surface ocean phosphate. However, offsets in the y-intercepts of calibration regressions among co-located individuals and taxa suggest that biologically-regulated “vital effects” and/or skeletal extension rate may also affect skeletal P incorporation. Quantification of the effect of skeletal extension rate on P/Ca could lead to corrected calibration equations and improved inter-colony P/Ca agreement. Nevertheless, the efficacy of the P/Ca proxy is thus supported by both broad scale correlation to mean surface water phosphate and regional calibration against documented local seawater phosphate variations.

Document Type: Article
Keywords: coral, P/Ca, seawater phosphate, multi-colony
Refereed: Yes
Open Access Journal?: No
Publisher: Elsevier
Date Deposited: 06 Mar 2018 12:28
Last Modified: 06 Mar 2018 12:28
URI: https://oceanrep.geomar.de/id/eprint/41305

Actions (login required)

View Item View Item