Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget.

Bauch, Dorothea and Cherniavskaia, E. (2018) Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget. Open Access Journal of Geophysical Research: Oceans, 123 (3). pp. 1896-1906. DOI 10.1002/2017JC013524.

[thumbnail of Bauch_et_al_2018.pdf]
Preview
Text
Bauch_et_al_2018.pdf - Published Version

Download (3MB) | Preview

Supplementary data:

Abstract

Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt.

We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer datasets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.

Document Type: Article
Keywords: Arctic Ocean; Siberian shelves; stable oxygen isotopes; water masses; principal component analysis; Arctic Halocline
Research affiliation: OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-P-OZ Paleo-Oceanography
Refereed: Yes
Open Access Journal?: No
Publisher: AGU (American Geophysical Union), Wiley
Projects: CATS
Date Deposited: 26 Feb 2018 11:30
Last Modified: 09 Mar 2022 13:35
URI: https://oceanrep.geomar.de/id/eprint/42027

Actions (login required)

View Item View Item