OceanRep
Global-scale quantification of mineralization pathways in marine sediments: A reaction-transport modeling approach.
Thullner, M., Dale, Andy W. and Regnier, P. (2009) Global-scale quantification of mineralization pathways in marine sediments: A reaction-transport modeling approach. Geochemistry, Geophysics, Geosystems, 10 . DOI 10.1029/2009GC002484.
Text
770_Thullner_2009_GlobalscaleQuantificationOfMineralizationPathways_Artzeit_pubid12309.pdf - Published Version Download (718kB) |
Abstract
[1] The global-scale quantification of organic carbon (Corg) degradation pathways in marine sediments is difficult to achieve experimentally due to the limited availability of field data. In the present study, a numerical modeling approach is used as an alternative to quantify the major metabolic pathways of Corg oxidation (Cox) and associated fluxes of redox-sensitive species fluxes along a global ocean hypsometry, using the seafloor depth (SFD) as the master variable. The SFD dependency of the model parameters and forcing functions is extracted from existing empirical relationships or from the NOAA World Ocean Atlas. Results are in general agreement with estimates from the literature showing that the relative contribution of aerobic respiration to Cox increases from <10% at shallow SFD to >80% in deep-sea sediments. Sulfate reduction essentially follows an inversed SFD dependency, the other metabolic pathways (denitrification, Mn and Fe reduction) only adding minor contributions to the global-scale mineralization of Corg. The hypsometric analysis allows the establishment of relationships between the individual terminal electron acceptor (TEA) fluxes across the sediment-water interface and their respective contributions to the Corg decomposition process. On a global average, simulation results indicate that sulfate reduction is the dominant metabolic pathway and accounts for approximately 76% of the total Cox, which is higher than reported so far by other authors. The results also demonstrate the importance of bioirrigation for the assessment of global species fluxes. Especially at shallow SFD most of the TEAs enter the sediments via bioirrigation, which complicates the use of concentration profiles for the determination of total TEA fluxes by molecular diffusion. Furthermore, bioirrigation accounts for major losses of reduced species from the sediment to the water column prohibiting their reoxidation inside the sediment. As a result, the total carbon mineralization rate exceeds the total flux of oxygen into the sediment by a factor of 2 globally.
Document Type: | Article |
---|---|
Keywords: | early diagenesis; geomicrobiology modeling; redox reaction rates; terminal electron acceptor fluxes; carbon burial |
Research affiliation: | HGF-UFZ OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-MG Marine Geosystems |
Refereed: | Yes |
Open Access Journal?: | No |
Publisher: | AGU (American Geophysical Union) |
Date Deposited: | 26 Oct 2009 09:27 |
Last Modified: | 27 Jun 2019 13:03 |
URI: | https://oceanrep.geomar.de/id/eprint/449 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !