Magmatic-epithermal transitions in alkalic systems: Porgera gold deposit, Papua New Guinea.

Richards, Jeremy P. (1992) Magmatic-epithermal transitions in alkalic systems: Porgera gold deposit, Papua New Guinea. Geology, 20 (6). pp. 547-550. DOI 10.1130/0091-7613(1992)020<0547:METIAS>2.3.CO;2.

[thumbnail of Richards_1992.pdf] Text
Richards_1992.pdf - Reprinted Version
Restricted to Registered users only

Download (754kB)

Supplementary data:

Abstract

Fluid-inclusion and stable isotope evidence are presented for the transition from magmatic-related mesothermal to meteoric water-dominated epithermal activity at the giant Porgera gold deposit, Papua New Guinea. Reflecting this transition, Au-Ag mineralization occurs in two main stages: disseminated auriferous pyrite in phyllic alteration zones (stage I); and fault-related, quartz-roscoelite-cemented hydrothermal breccias and veins carrying locally abundant free gold and Au-Ag-tellurides (stage II). The deposit is spatially and temporally associated with a late Miocene (6 Ma) epizonal intrusive complex emplaced in continental crust immediately prior to an early Pliocene continent- island-arc collision. Stage I ore formation was associated in part with fluids of magmatic origin (˜200 to >500 °C, 7 to 12 wt% and 31 to 58 wt% NaCl equivalent [eq.], delta18O = 8.10/00 to 9.40/00, deltaD = -500/00 to -320/00) and appears to represent a new type of Au-rich, Cu-poor, porphyritic, intrusion- related mineralization associated with volatile-rich, mafic, alkalic magmatism in a continent island-arc collision environment. Stage II vein-type mineralization crosscuts this earlier disseminated orebody; it formed at depths of 2 to 3 km from lower temperature, lower salinity, isotopically exchanged ground waters (˜180 °C, 3 to 10 eq. wt% NaCl, delta18O = 3.10/00 to 6.40/00, deltaD = -620/00 to -340/00), similar to fluids from other Au-Ag-Te epithermal deposits. Gold in these late veins was probably remobilized from deeper stage I-type mineralization, and stable isotope and textural evidence suggest that Au was deposited following tectonically induced fluid phase separation.

Document Type: Article
Keywords: alkalic systems, Porgera gold deposit, D/H hydrogen mineral deposits, genesis, Australasia, isotopes, fluid inclusions, economic geology, inclusions, metal ores, O-18/O-16, Papua New Guinea, oxygen, plate tectonics, S-34/S-32, sulfur, gold, ores, magmas, silver, stable isotopes
Refereed: Yes
Open Access Journal?: No
Publisher: GSA, Geological Society of America
Projects: Enrichment
Date Deposited: 24 Jun 2019 10:00
Last Modified: 24 Jun 2019 10:00
URI: https://oceanrep.geomar.de/id/eprint/46975

Actions (login required)

View Item View Item