The interplay of thermodynamics and ocean dynamics during ENSO growth phase.

Bayr, Tobias , Drews, Annika , Latif, Mojib and Lübbecke, Joke F. (2021) The interplay of thermodynamics and ocean dynamics during ENSO growth phase. Open Access Climate Dynamics, 56 . pp. 1681-1697. DOI 10.1007/s00382-020-05552-4.

[thumbnail of Bayr2021_Article_TheInterplayOfThermodynamicsAn.pdf]
Preview
Text
Bayr2021_Article_TheInterplayOfThermodynamicsAn.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (2MB) | Preview

Supplementary data:

Abstract

The growth of El Niño/Southern Oscillation (ENSO) events is determined by the balance between ocean dynamics and thermodynamics. Here we quantify the contribution of the thermodynamic feedbacks to the sea surface temperature (SST) change during ENSO growth phase by integrating the atmospheric heat fluxes over the temporarily and spatially varying mixed layer to derive an offline “slab ocean” SST. The SST change due to ocean dynamics is estimated as the residual with respect to the total SST change. In observations, 1 K SST change in the Niño3.4 region is composed of an ocean dynamical SST forcing of + 2.6 K and a thermodynamic damping of − 1.6 K, the latter mainly by the shortwave-SST (− 0.9 K) and latent heat flux-SST feedback (− 0.7 K). Most climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) underestimate the SST change due to both ocean dynamics and net surface heat fluxes, revealing an error compensation between a too weak forcing by ocean dynamics and a too weak damping by atmospheric heat fluxes. In half of the CMIP5 models investigated in this study, the shortwave-SST feedback erroneously acts as an amplifying feedback over the eastern equatorial Pacific, resulting in a hybrid of ocean-driven and shortwave-driven ENSO dynamics. Further, the phase locking and asymmetry of ENSO is investigated in the CMIP5 model ensemble. The climate models with stronger atmospheric feedbacks tend to simulate a more realistic seasonality and asymmetry of the heat flux feedbacks, and they exhibit more realistic phase locking and asymmetry of ENSO. Moreover, the almost linear latent heat flux feedback contributes to ENSO asymmetry in the far eastern equatorial Pacific through an asymmetry in the mixed layer depth. This study suggests that the dynamic and thermodynamic ENSO feedbacks and their seasonality and asymmetries are important metrics to consider for improving ENSO representation in climate models.

Document Type: Article
Keywords: El Nino/Southern Oscillation; ENSO dynamics; ENSO asymmetry; atmospheric feedbacks; error compensation; CMIP5
Research affiliation: OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-ME Maritime Meteorology
Main POF Topic: PT2: Ocean and Cryosphere
Refereed: Yes
Open Access Journal?: No
Publisher: Springer
Projects: Influence of the Model Bias on ENSO Projections of the 21st Century
Date Deposited: 15 Dec 2020 11:05
Last Modified: 07 Feb 2024 15:37
URI: https://oceanrep.geomar.de/id/eprint/51239

Actions (login required)

View Item View Item