OceanRep
Summertime increases in upper-ocean stratification and mixed-layer depth.
Sallée, Jean-Baptiste , Pellichero, Violaine, Akhoudas, Camille, Pauthenet, Etienne , Vignes, Lucie, Schmidtko, Sunke , Garabato, Alberto Naveira , Sutherland, Peter and Kuusela, Mikael (2021) Summertime increases in upper-ocean stratification and mixed-layer depth. Nature, 591 (7851). pp. 592-598. DOI 10.1038/s41586-021-03303-x.
Text
s41586-021-03303-x.pdf - Published Version Restricted to Registered users only Download (6MB) | Contact |
|
Preview |
Text (Pressemitteilung)
pm_2021_16_Nature_Ozeanschichtung.pdf - Supplemental Material Available under License Creative Commons: Attribution 4.0. Download (232kB) | Preview |
Preview |
Text (Press release)
pm_2021_16_Nature_Ocean_Stratification_en.pdf - Supplemental Material Available under License Creative Commons: Attribution 4.0. Download (253kB) | Preview |
Text (Correction)
s41586-021-03745-3.pdf - Supplemental Material Restricted to Registered users only Download (845kB) | Contact |
Abstract
The surface mixed layer of the world ocean regulates global climate by controlling heat and carbon exchange between the atmosphere and the oceanic interior1,2,3. The mixed layer also shapes marine ecosystems by hosting most of the ocean’s primary production4 and providing the conduit for oxygenation of deep oceanic layers. Despite these important climatic and life-supporting roles, possible changes in the mixed layer during an era of global climate change remain uncertain. Here we use oceanographic observations to show that from 1970 to 2018 the density contrast across the base of the mixed layer increased and that the mixed layer itself became deeper. Using a physically based definition of upper-ocean stability that follows different dynamical regimes across the global ocean, we find that the summertime density contrast increased by 8.9 ± 2.7 per cent per decade (10−6–10−5 per second squared per decade, depending on region), more than six times greater than previous estimates. Whereas prior work has suggested that a thinner mixed layer should accompany a more stratified upper ocean5,6,7, we find instead that the summertime mixed layer deepened by 2.9 ± 0.5 per cent per decade, or several metres per decade (typically 5–10 metres per decade, depending on region). A detailed mechanistic interpretation is challenging, but the concurrent stratification and deepening of the mixed layer are related to an increase in stability associated with surface warming and high-latitude surface freshening8,9, accompanied by a wind-driven intensification of upper-ocean turbulence10,11. Our findings are based on a complex dataset with incomplete coverage of a vast area. Although our results are robust within a wide range of sensitivity analyses, important uncertainties remain, such as those related to sparse coverage in the early years of the 1970–2018 period. Nonetheless, our work calls for reconsideration of the drivers of ongoing shifts in marine primary production, and reveals stark changes in the world’s upper ocean over the past five decades.
Document Type: | Article |
---|---|
Research affiliation: | IFREMER OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-PO Physical Oceanography |
Main POF Topic: | PT2: Ocean and Cryosphere |
Refereed: | Yes |
Open Access Journal?: | No |
Publisher: | Nature Research |
Related URLs: | |
Date Deposited: | 25 Mar 2021 09:40 |
Last Modified: | 07 Feb 2024 15:34 |
URI: | https://oceanrep.geomar.de/id/eprint/52149 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !