Sedimentation-driven cyclic rebuilding of gas hydrates.

Schmidt, Christopher , Gupta, Shubhangi , Rüpke, Lars , Burwicz-Galerne, Ewa and Hartz, Ebbe H. (2022) Sedimentation-driven cyclic rebuilding of gas hydrates. Marine and Petroleum Geology, 140 . Art.Nr. 105628. DOI 10.1016/j.marpetgeo.2022.105628.

[thumbnail of Schmidt_et_al_JMPG_2022.pdf] Text
Schmidt_et_al_JMPG_2022.pdf - Published Version
Restricted to Registered users only

Download (10MB) | Contact

Supplementary data:

Abstract

Highlights

• Sedimentation-driven gas hydrate recycling is cyclic in nature with time scales set by reactive multi-phase transport.

• Each cycle can be divided into three distinct phases: 1) gas accumulation phase, 2) gas breakthrough phase and 3) uninhibited hydrate build-up phase.

• In the presence of sufficient accumulated gas, convex deposition of hydrate acts like a mechanical nozzle for the ascending gas flow.

Gas hydrate recycling is an important process in natural hydrate systems worldwide and frequently leads to the high gas hydrate saturations found close to the base of the gas hydrate stability zone (GHSZ). However, to date it remains enigmatic how, and under which conditions, free gas invades back into the GHSZ. Here we use a 1D compositional multi-phase flow model that accounts for sedimentation to investigate the dominant mechanisms that control free gas flow into the GHSZ using a wide-range of parameters i.e. hydrate formation kinetics, sediment permeability, and capillary pressure. In the first part of this study, we investigate free gas invasion into the GHSZ without any sedimentation, and analyse the dynamics of hydrate formation in the vicinity of the base of GHSZ. This helps establish plausible initial conditions for the main part of the study, namely, hydrate recycling due to rapid and continuous sedimentation. For the case study, we apply our numerical model to the Green Canyon Site 955 in the Gulf of Mexico, where the reported high hydrate saturations are likely a result of hydrate recycling driven by rapid sedimentation. In the model, an initial hydrate layer forms due to the invasion of a specified volume of rising free gas. This hydrate layer is consistent with the local pressure, temperature and salinity state. This hydrate layer is then thermally de-stabilised by sedimentation resulting in free gas formation and hydrate recycling. A key finding of our study is that gas hydrate recycling is a cyclic process which can be divided into three phases of 1) gas hydrate melting and free gas nozzling through the hydrate layer, 2) formation of a new gas hydrate layer as the old layer vanishes, and 3) fast uninhibited grow of a new hydrate layer. High hydrate saturations of about 80% can be attained purely through physical, burial-driven recycling of gas hydrates, without any additional gas input from other sources. Hydrate recycling is, therefore, highly dynamic with its own inherent cyclicity rather than a gradual process paced by the rate of sediment deposition.

Document Type: Article
Keywords: Gas hydrate, Gulf of Mexico, Methane recycling, Numerical modelling
Research affiliation: MARUM
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-MG Marine Geosystems
OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS Magmatic and Hydrothermal Systems
Main POF Topic: PT6: Marine Life
Refereed: Yes
Open Access Journal?: No
Publisher: Elsevier
Projects: SPP 572
Date Deposited: 23 Mar 2022 12:32
Last Modified: 07 Feb 2024 15:40
URI: https://oceanrep.geomar.de/id/eprint/55567

Actions (login required)

View Item View Item