Screening Disinfection Byproducts in Arid-Coastal Wastewater: A Workflow Using GC×GC-TOFMS, Passive Sampling, and NMF Deconvolution Algorithm.

Siddiqui, Muhammad Usman, Sibtain, Muhammad, Ahmad, Farrukh, Zushi, Yasuyuki and Nabi, Deedar (2024) Screening Disinfection Byproducts in Arid-Coastal Wastewater: A Workflow Using GC×GC-TOFMS, Passive Sampling, and NMF Deconvolution Algorithm. Open Access Journal of Xenobiotics, 14 (2). pp. 554-574. DOI 10.3390/jox14020033.

[thumbnail of jox-14-00033.pdf]
Preview
Text
jox-14-00033.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (4MB) | Preview
[thumbnail of jox-14-00033-s001.zip] Archive
jox-14-00033-s001.zip - Supplemental Material
Available under License Creative Commons: Attribution 4.0.

Download (730kB)

Supplementary data:

Abstract

Disinfection during tertiary municipal wastewater treatment is a necessary step to control the spread of pathogens; unfortunately, it also gives rise to numerous disinfection byproducts (DBPs), only a few of which are regulated because of the analytical challenges associated with the vast number of potential DBPs. This study utilized polydimethylsiloxane (PDMS) passive samplers, comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS), and non-negative matrix factorization (NMF) spectral deconvolution for suspect screening of DBPs in treated wastewater. PDMS samplers were deployed upstream and downstream of the chlorination unit in a municipal wastewater treatment plant located in Abu Dhabi, and their extracts were analyzed using GC×GC-TOFMS. A workflow incorporating a multi-tiered, eight-filter screening process was developed, which successfully enabled the reliable isolation of 22 candidate DBPs from thousands of peaks. The NMF spectral deconvolution improved the match factor score of unknown mass spectra to the reference mass spectra available in the NIST library by 17% and facilitated the identification of seven additional DBPs. The close match of the first-dimension retention index data and the GC×GC elution patterns of DBPs, both predicted using the Abraham solvation model, with their respective experimental counterparts—with the measured data available in the NIST WebBook and the GC×GC elution patterns being those observed for the candidate peaks—significantly enhanced the accuracy of peak assignment. Isotopic pattern analysis revealed a close correspondence for 11 DBPs with clearly visible isotopologues in reference spectra, thereby further strengthening the confidence in the peak assignment of these DBPs. Brominated analogues were prevalent among the detected DBPs, possibly due to seawater intrusion. The fate, behavior, persistence, and toxicity of tentatively identified DBPs were assessed using EPI Suite™ and the CompTox Chemicals Dashboard. This revealed their significant toxicity to aquatic organisms, including developmental, mutagenic, and endocrine-disrupting effects in certain DBPs. Some DBPs also showed activity in various CompTox bioassays, implicating them in adverse molecular pathways. Additionally, 11 DBPs demonstrated high environmental persistence and resistance to biodegradation. This combined approach offers a powerful tool for future research and environmental monitoring, enabling accurate identification and assessment of DBPs and their potential risks.

Document Type: Article
Keywords: disinfection byproducts; passive sampler; GC×GC-TOFMS; NMF spectral deconvolution; hazard assessment
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography > FB2-CH Water column biogeochemistry
Main POF Topic: PT6: Marine Life
Refereed: Yes
Open Access Journal?: Yes
Publisher: MDPI
Related URLs:
Date Deposited: 02 May 2024 13:13
Last Modified: 15 Jul 2024 08:26
URI: https://oceanrep.geomar.de/id/eprint/60258

Actions (login required)

View Item View Item