Global Climatology of Low‐Level‐Jets: Occurrence, Characteristics, and Meteorological Drivers.

Luiz, E. W. and Fiedler, Stephanie (2024) Global Climatology of Low‐Level‐Jets: Occurrence, Characteristics, and Meteorological Drivers. Open Access Journal of Geophysical Research: Atmospheres, 129 (9). Art.Nr. e2023JD040262. DOI 10.1029/2023JD040262.

[thumbnail of JGR Atmospheres - 2024 - Luiz - Global Climatology of Low‐Level‐Jets Occurrence Characteristics and Meteorological.pdf]
Preview
Text
JGR Atmospheres - 2024 - Luiz - Global Climatology of Low‐Level‐Jets Occurrence Characteristics and Meteorological.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial 4.0.

Download (4MB) | Preview

Supplementary data:

Abstract

Low-level jets (LLJs), vertical profiles with a wind speed maxima in the lowest hundred meters of the troposphere, have multiple impacts in the Earth system, but a global present-day climatology based on contemporary data does not exist. We use the spatially and temporally complete data set from ERA5 reanalysis to compile a global climatology of LLJs for studying the formation mechanisms, characteristics, and trends during the period of 1992–2021. In the global mean, LLJs are detected 21% of the time with more cases over land (32%) than over the ocean (15%). We classified the LLJs into three categories: non-polar land (LLLJ), polar land (PLLJ), and coastal (CLLJ) LLJs. For LLLJ, the averaged frequency of occurrence is 20% and 75% of them are associated with a near-surface temperature inversion as a prerequisite for an inertial oscillation. PLLJs are also associated with a temperature inversion and occur even more frequently with 59% of the time. These are also the lowest and the strongest LLJs among the three categories. CLLJs are particularly frequent in some marine hotspots, situated along the west coast of continents, with neutral to unstable stratification close to the surfaces and a stably stratified layer aloft. We found distinct regional trends in both the frequency and intensity of LLJs over the past decades, which can have implications for the emission and transport of aerosols, and the transport of atmospheric moisture. Future studies could address changes in LLJs and the associated implications in more detail, based on the here released ERA5-based LLJ data.
Key Points:
- First global comprehensive low-level jet (LLJ) climatology using ERA5
- Polar LLJs are the strongest and most frequent among the detected types
- Distinct past trends in regional LLJ frequency and intensity

Document Type: Article
Keywords: Low‐level jets (LLJs)
Research affiliation: OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-ME Maritime Meteorology
Main POF Topic: PT2: Ocean and Cryosphere
Refereed: Yes
Open Access Journal?: No
Publisher: AGU (American Geophysical Union), Wiley
Related URLs:
Date Deposited: 05 Jun 2024 09:45
Last Modified: 15 Jul 2024 07:31
URI: https://oceanrep.geomar.de/id/eprint/60378

Actions (login required)

View Item View Item