OceanRep
Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification.
Stumpp, Meike, Hu, Marian Yong-An, Melzner, Frank , Gutowska, Magdalena, Dorey, N., Himmerkus, Nina, Holtmann, Wiebke C., Dupont, S. T., Thorndyke, M. C. and Bleich, Markus (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. PNAS Proceedings of the National Academy of Sciences of the United States of America, 109 (44). pp. 18192-18197. DOI 10.1073/pnas.1209174109.
Preview |
Text
18192.full.pdf - Published Version Download (1MB) | Preview |
Abstract
Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3−, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
Document Type: | Article |
---|---|
Additional Information: | WOS:000311149900099 |
Keywords: | AMORPHOUS CALCIUM-CARBONATE; PRIMARY MESENCHYME CELLS; ACID-BASE REGULATION; GIANT FIBER LOBE; INTRACELLULAR PH; BUFFERING CAPACITY; INORGANIC CARBON; PLUTEUS LARVAE; MYTILUS-EDULIS; CO2; pH microelectrode; Strongylocentrotus droebachiensis; acid-base regulation; Na+-HCO3- transport; epithelial transport |
Research affiliation: | OceanRep > The Future Ocean - Cluster of Excellence > FO-R08 Kiel University > Kiel Marine Science OceanRep > The Future Ocean - Cluster of Excellence OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-BI Biological Oceanography OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EOE-B Experimental Ecology - Benthic Ecology OceanRep > The Future Ocean - Cluster of Excellence > FO-R04 Kiel University |
Refereed: | Yes |
Open Access Journal?: | No |
Publisher: | National Academy of Sciences |
Projects: | BIOACID, Future Ocean |
Date Deposited: | 13 Nov 2012 10:07 |
Last Modified: | 23 Sep 2019 19:16 |
URI: | https://oceanrep.geomar.de/id/eprint/19188 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !