OceanRep
Ocean-related global change alters lipid biomarker production in common marine phytoplankton.
Bi, Rong, Ismar-Rebitz, Stefanie M. H. , Sommer, Ulrich, Zhang, Hailong and Zhao, Meixun (2020) Ocean-related global change alters lipid biomarker production in common marine phytoplankton. Biogeosciences (BG), 17 (24). pp. 6287-6307. DOI 10.5194/bg-17-6287-2020.
Preview |
Text
bg-17-6287-2020.pdf - Published Version Available under License Creative Commons: Attribution 4.0. Download (1MB) | Preview |
Preview |
Text
bg-17-6287-2020-supplement.pdf - Supplemental Material Available under License Creative Commons: Attribution 4.0. Download (342kB) | Preview |
Abstract
Lipids, in their function as trophic markers in food webs and organic matter source indicators in the water column and sediments, provide a tool for reconstructing the complexity of global change effects on aquatic ecosystems. It remains unclear how ongoing changes in multiple environmental drivers affect the production of key lipid biomarkers in marine phytoplankton. Here, we tested the responses of sterols, alkenones and fatty acids (FAs) in the diatom Phaeodactylum tricornutum, the cryptophyte Rhodomonas sp. and the haptophyte Emiliania huxleyi under a full-factorial combination of three temperatures (12, 18 and 24 ∘C), three N : P supply ratios (molar ratios 10 : 1, 24 : 1 and 63 : 1) and two pCO2 levels (560 and 2400 µatm) in semicontinuous culturing experiments. Overall, N and P deficiency had a stronger effect on per-cell contents of sterols, alkenones and FAs than warming and enhanced pCO2. Specifically, P deficiency caused an overall increase in biomarker production in most cases, while N deficiency, warming and high pCO2 caused nonsystematic changes. Under future ocean scenarios, we predict an overall decrease in carbon-normalized contents of sterols and polyunsaturated fatty acids (PUFAs) in E. huxleyi and P. tricornutum and a decrease in sterols but an increase in PUFAs in Rhodomonas sp. Variable contents of lipid biomarkers indicate a diverse carbon allocation between marine phytoplankton species in response to changing environments. Thus, it is necessary to consider the changes in key lipids and their consequences for food-web dynamics and biogeochemical cycles, when predicting the influence of global change on marine ecosystems.
Document Type: | Article |
---|---|
Research affiliation: | OceanRep > GEOMAR > FB3 Marine Ecology > FB3-OEB Ökosystembiologie des Ozeans |
Refereed: | Yes |
Open Access Journal?: | Yes |
Publisher: | Copernicus Publications (EGU) |
Related URLs: | |
Date Deposited: | 04 Jan 2021 09:53 |
Last Modified: | 08 Feb 2023 09:38 |
URI: | https://oceanrep.geomar.de/id/eprint/51367 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !