OceanRep
Context‐dependent integrated stress resistance promotes a global invasive pest.
Tarusikirwa, Vimbai L., Cuthbert, Ross N. , Mutamiswa, Reyard and Nyamukondiwa, Casper (2022) Context‐dependent integrated stress resistance promotes a global invasive pest. Insect Science, 29 (6). pp. 1790-1804. DOI 10.1111/1744-7917.13035.
Preview |
Text
Insect Science - 2022 - Tarusikirwa - Context‐dependent integrated stress resistance promotes a global invasive pest.pdf - Published Version Available under License Creative Commons: Attribution 4.0. Download (691kB) | Preview |
Abstract
In nature, insects concurrently face multiple environmental stressors, a scenario likely increasing with climate change. Integrated stress resistance (ISR) thus often improves fitness and could drive invasiveness, but how physiological mechanisms influence invasion has lacked examination. Here, we investigated cross tolerance to abiotic stress factors which may influence range limits in the South American tomato pinworm – a global invader that is an ecologically and socially damaging crop pest. Specifically, we tested the effects of prior rapid cold- and heat-hardening (RCH and RHH), fasting and desiccation on cold and heat tolerance traits, as well as starvation and desiccation survivability between T. absoluta life stages. Acclimation effects on critical thermal minima (CTmin) and maxima (CTmax) were inconsistent, showing significantly deleterious effects of RCH on adult CTmax and CTmin and, conversely, beneficial acclimation effects of RCH on larval CTmin. While no beneficial effects of desiccation acclimation were recorded for desiccation tolerance, fasted individuals had significantly higher survival in adults, whereas fasting negatively affected larval tolerances. Furthermore, fasted and desiccation acclimated adults had significantly higher starvation tolerance, showing strong evidence for cross-tolerance. Our results show context-dependent ISR traits that may promote T. absoluta fitness and competitiveness. Given the frequent overlapping occurrence of these divergent stressors, ISR reported here may thus partly elucidate the observed rapid global spread of T. absoluta into more stressful environments than expected. This information is vital in determining the underpinnings of multi-stressor responses, which are fundamental in forecasting species responses to changing environments and management responses.
Document Type: | Article |
---|---|
Keywords: | acclimation; cross talk; cross tolerance; invasive species; thermal tolerance; tomato leaf miner |
Research affiliation: | OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EOE-B Experimental Ecology - Benthic Ecology |
Main POF Topic: | PT6: Marine Life |
Refereed: | Yes |
Open Access Journal?: | No |
Publisher: | Wiley |
Date Deposited: | 16 Mar 2022 06:57 |
Last Modified: | 07 Feb 2024 15:50 |
URI: | https://oceanrep.geomar.de/id/eprint/55533 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !