Application of Feature-Based Molecular Networking for Comparative Metabolomics and Targeted Isolation of Stereoisomers from Algicolous Fungi.

Fan, Bicheng, Grauso, Laura, Li, Fengjie, Scarpato, Silvia, Mangoni, Alfonso and Tasdemir, Deniz (2022) Application of Feature-Based Molecular Networking for Comparative Metabolomics and Targeted Isolation of Stereoisomers from Algicolous Fungi. Open Access Marine Drugs, 20 (3). Art.Nr. 210. DOI 10.3390/md20030210.

[thumbnail of marinedrugs_20_00210_v2.pdf]
Preview
Text
marinedrugs_20_00210_v2.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (850kB) | Preview

Supplementary data:

Abstract

Seaweed endophytic (algicolous) fungi are talented producers of bioactive natural products. We have previously isolated two strains of the endophytic fungus, Pyrenochaetopsis sp. FVE-001 and FVE-087, from the thalli of the brown alga Fucus vesiculosus. Initial chemical studies yielded four new decalinoylspirotetramic acid derivatives with antimelanoma activity, namely pyrenosetins A–C (1–3) from Pyrenochaetopsis sp. strain FVE-001, and pyrenosetin D (4) from strain FVE-087. In this study, we applied a comparative metabolomics study employing HRMS/MS based feature-based molecular networking (FB MN) on both Pyrenochaetopsis strains. A higher chemical capacity in production of decalin derivatives was observed in Pyrenochaetopsis sp. FVE-087. Notably, several decalins showed different retention times despite the same MS data and MS/MS fragmentation pattern with the previously isolated pyrenosetins, indicating they may be their stereoisomers. FB MN-based targeted isolation studies coupled with antimelanoma activity testing on the strain FVE-087 afforded two new stereoisomers, pyrenosetins E (5) and F (6). Extensive NMR spectroscopy including DFT computational studies, HR-ESIMS, and Mosher’s ester method were used in the structure elucidation of compounds 5 and 6. The 3′R,5′R stereochemistry determined for compound 6 was identical to that previously reported for pyrenosetin C (3), whose stereochemistry was revised as 3′S,5′R in this study. Pyrenosetin E (5) inhibited the growth of human malignant melanoma cells (A-375) with an IC50 value of 40.9 μM, while 6 was inactive. This study points out significant variations in the chemical repertoire of two closely related fungal strains and the versatility of FB MN in identification and targeted isolation of stereoisomers. It also confirms that the little-known fungal genus Pyrenochaetopsis is a prolific source of complex decalinoylspirotetramic acid derivatives.

Document Type: Article
Keywords: Pyrenochaetopsis sp.; Fucus vesiculosus; feature-based molecular networking; pyrenosetin; decalinoylspirotetramic acid; stereoisomers; anticancer; malignant melanoma
Research affiliation: OceanRep > GEOMAR > FB3 Marine Ecology > FB3-MN Marine natural products chemistry
Main POF Topic: PT6: Marine Life
Refereed: Yes
Open Access Journal?: Yes
Publisher: MDPI
Date Deposited: 17 Mar 2022 08:33
Last Modified: 07 Feb 2024 15:37
URI: https://oceanrep.geomar.de/id/eprint/55541

Actions (login required)

View Item View Item