Magnitude, Trends, and Variability of the Global Ocean Carbon Sink From 1985 to 2018.

DeVries, Tim, Yamamoto, Kana, Wanninkhof, Rik, Gruber, Nicolas, Hauck, Judith, Müller, Jens Daniel, Bopp, Laurent, Carroll, Dustin, Carter, Brendan, Chau, Thi‐Tuyet‐Trang, Doney, Scott C., Gehlen, Marion, Gloege, Lucas, Gregor, Luke, Henson, Stephanie, Kim, Ji Hyun, Iida, Yosuke, Ilyina, Tatiana, Landschützer, Peter, Le Quéré, Corinne, Munro, David, Nissen, Cara, Patara, Lavinia , Pérez, Fiz F., Resplandy, Laure, Rodgers, Keith B., Schwinger, Jörg, Séférian, Roland, Sicardi, Valentina, Terhaar, Jens, Triñanes, Joaquin, Tsujino, Hiroyuki, Watson, Andrew, Yasunaka, Sayaka and Zeng, Jiye (2023) Magnitude, Trends, and Variability of the Global Ocean Carbon Sink From 1985 to 2018. Open Access Global Biogeochemical Cycles, 37 (10). Art.Nr. e2023GB007780. DOI 10.1029/2023GB007780.

[thumbnail of Global Biogeochemical Cycles - 2023 - DeVries - Magnitude Trends and Variability of the Global Ocean Carbon Sink From.pdf]
Preview
Text
Global Biogeochemical Cycles - 2023 - DeVries - Magnitude Trends and Variability of the Global Ocean Carbon Sink From.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial 4.0.

Download (4MB) | Preview
[thumbnail of 2023gb007780-sup-0001-supporting information si-s01.docx] Text
2023gb007780-sup-0001-supporting information si-s01.docx - Supplemental Material
Available under License Creative Commons: Attribution-Noncommercial 4.0.

Download (1MB)

Supplementary data:

Abstract

This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985-2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is -1.6 +/- 0.2 PgC yr(-1) based on an ensemble of reconstructions of the history of sea surface pCO(2) (pCO(2) products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at -2.1 +/- 0.3 PgC yr(-1) by an ensemble of ocean biogeochemical models, and -2.4 +/- 0.1 PgC yr(-1) by two ocean circulation inverse models. The ocean also degasses about 0.65 +/- 0.3 PgC yr(-1) of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of -0.61 +/- 0.12 PgC yr(-1) decade(-1), while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of -0.34 +/- 0.06 and -0.41 +/- 0.03 PgC yr(-1) decade(-1), respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2-3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.

Document Type: Article
Keywords: ocean; carbon cycle; RECCAP2; climate change; anthropogenic carbon
Research affiliation: MPG
OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-OD Ocean Dynamics
Woods Hole
HGF-Hereon
NOC
HGF-AWI
Main POF Topic: PT2: Ocean and Cryosphere
Refereed: Yes
Open Access Journal?: No
Publisher: AGU (American Geophysical Union), Wiley
Related URLs:
Date Deposited: 03 Nov 2023 14:17
Last Modified: 07 Feb 2024 15:47
URI: https://oceanrep.geomar.de/id/eprint/59302

Actions (login required)

View Item View Item