OceanRep
Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry.
Lebrato, Mario , Wang, Yiming V., Tseng, Li-Chun , Achterberg, Eric P. , Chen, Xue-Gang, Molinero, Juan-Carlos, Bremer, Karen, Westernströer, Ulrike, Söding, Emanuel, Dahms, Hans-Uwe, Küter, Marie, Heinath, Verena, Jöhnck, Janika, Konstantinou, Kostas I., Yang, Yiing J. , Hwang, Jiang-Shiou and Garbe-Schönberg, Dieter (2019) Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry. Scientific Reports, 9 (Article number 16926). DOI 10.1038/s41598-019-53314-y.
Preview |
Text
s41598-019-53314-y.pdf - Published Version Available under License Creative Commons: Attribution 4.0. Download (5MB) | Preview |
Other (Excel file)
41598_2019_53314_MOESM1_ESM.xlsx - Supplemental Material Available under License Creative Commons: Attribution 4.0. Download (139kB) |
|
Other (Excel file)
41598_2019_53314_MOESM2_ESM.xlsx - Supplemental Material Available under License Creative Commons: Attribution 4.0. Download (47kB) |
|
Text
41598_2019_53314_MOESM3_ESM.docx - Supplemental Material Available under License Creative Commons: Attribution 4.0. Download (1MB) |
Abstract
Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon (“Nepartak”) hitting KST (12th May, and 2nd–10th July, 2016) were studied within a 10-year time series (2009–2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000–5000 µmol kg−1, and Total Alkalinity (TA) drawdowns were below 1500–1000 µmol kg−1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton Mg:Ca and Sr:Ca ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton Mg:Ca ratio during rising DIC (higher CO2) despite decreasing seawater Mg:Ca ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.
Document Type: | Article |
---|---|
Additional Information: | Data treatment and graphics The final databases are deposited at the NOAA National Center for Environmental Information (NCEI) under Accession Number 0175781 in https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0175781 with DOI: 10.25921/6hy3-6d56. All analyses and graphical work was performed in Statistica 13.0 (StatSoft), SigmaPlot 12.0 (Systat Software Inc.), SURFER (Golden Software, LLC.), and Corel Draw X7 (Corel Corp.). |
Keywords: | Natural disasters, typhoon, earthquake, hydrothermal vent, carbonate chemistry |
Research affiliation: | OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography > FB2-CH Water column biogeochemistry Kiel University |
Refereed: | Yes |
Open Access Journal?: | Yes |
Publisher: | Nature Research |
Date Deposited: | 26 Nov 2019 15:18 |
Last Modified: | 31 Jan 2022 09:14 |
URI: | https://oceanrep.geomar.de/id/eprint/48295 |
Actions (login required)
View Item |
Copyright 2023 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel | All rights reserved
Questions, comments and suggestions regarding the GEOMAR repository are welcomed
at bibliotheksleitung@geomar.de !