Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem: A Mesocosm Study.

Spisla, Carsten, Taucher, Jan , Bach, Lennart T. , Haunost, Mathias, Boxhammer, Tim , King, Andrew L., Jenkins, Bettany D., Wallace, Joselynn R., Ludwig, Andrea, Meyer, Jana, Stange, Paul, Minutolo, Fabrizio, Lohbeck, Kai T., Nauendorf, Alice, Kalter, Verena, Lischka, Silke , Sswat, Michael , Dörner, Isabel, Ismar-Rebitz, Stefanie M. H., Aberle, Nicole, Yong, Jaw Chuen, Bouquet, Jean-Marie, Lechtenbörger, Anna K., Kohnert, Peter, Krudewig, Michael and Riebesell, Ulf (2021) Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem: A Mesocosm Study. Open Access Frontiers in Marine Science, 7 . Art.Nr. 611157.. DOI 10.3389/fmars.2020.611157.

[thumbnail of fmars-07-611157.pdf]
Preview
Text
fmars-07-611157.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (16MB) | Preview
[thumbnail of Data_Sheet_1_Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem A Mesocosm.docx] Text
Data_Sheet_1_Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem A Mesocosm.docx - Supplemental Material
Available under License Creative Commons: Attribution 4.0.

Download (681kB)
[thumbnail of Data_Sheet_2_Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem A Mesocosm.docx] Text
Data_Sheet_2_Extreme Levels of Ocean Acidification Restructure the Plankton Community and Biogeochemistry of a Temperate Coastal Ecosystem A Mesocosm.docx - Supplemental Material
Available under License Creative Commons: Attribution 4.0.

Download (604kB)

Supplementary data:

Abstract

The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.

Document Type: Article
Keywords: climate change; ocean acidification; plankton ecology; biogeochemistry; coastal ecosystem; mesocosm
Dewey Decimal Classification: 500 Natural Sciences and Mathematics > 570 Life sciences; biology
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-BM Biogeochemical Modeling
OceanRep > The Future Ocean - Cluster of Excellence
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-BI Biological Oceanography
OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
OceanRep > GEOMAR > FB3 Marine Ecology > FB3-OEB Ökosystembiologie des Ozeans
Main POF Topic: PT6: Marine Life
Refereed: Yes
Open Access Journal?: Yes
Publisher: Frontiers
Projects: Future Ocean
Expeditions/Models/Experiments:
Date Deposited: 23 Feb 2021 08:15
Last Modified: 07 Feb 2024 15:50
URI: https://oceanrep.geomar.de/id/eprint/51915

Actions (login required)

View Item View Item